MPC-Friendly Symmetric Key Primitives

Lorenzo Grassi 1 Christian Rechberger 1 Dragoș Rotaru 2
Peter Scholl 2 Nigel P. Smart 2

1Graz University of Technology
2University of Bristol

October 25, 2016
What is Multiparty Computation?
What is Multiparty Computation?
Interesting problems

Linear Programming
Interesting problems

Linear Programming

Integer Comparison
Interesting problems

Linear Programming

Integer Comparison

Fixed Point Arithmetic
Interesting problems

- Linear Programming
- Integer Comparison
- Fixed Point Arithmetic
Interesting problems

Easy to implement via arithmetic circuits mod p
There is a problem.
Move data **securely** between clients and MPC engines.
Need a PRF mod \(p \)

- Enc / Dec in CTR mode use only PRF calls.
- Avoid the \(n \) fold database/key blowup by secret share the key and use a PRF mod \(p \) in MPC!
- Why mod \(p \)? Conversion between binary and arithmetic shares is expensive.
Other use cases for PRF’s in MPC

- Secure database joins [LTW13].
- Oblivious RAM [LO13].
- Searchable symmetric encryption, order-revealing encryption [BCO’N11, BLRSZZ15, CLWW16, BBO’N07, CJJKRS13].
What we have done

Benchmark and create new protocols using PRF's within SPDZ protocol.
Why SPDZ?

- MPC protocol with active security.
- 200 times faster pre-processing phase [KOS16].
- It is open source!
Each party P_i has $[a] \leftarrow a_i$ s.t. $a = \sum_{i=1}^{n} a_i$.

- Triples generation: $[a] = [b] \cdot [c]$.
- Random bits and squares: $[b], [s^2]$.

Preprocessing Phase
MPC with secret sharing 101

- Use 1 triple for each multiplication gate.
- Number of communication rounds is given by the multiplicative depth.

Online Phase
Circuit Evaluation in SPDZ

x y z
Circuit Evaluation in SPDZ
Circuit Evaluation in SPDZ
Circuit Evaluation in SPDZ
Circuit Evaluation in SPDZ

3 triples; 2 rounds.
What PRF’s have we looked at?

- AES [DR01].
- LowMC (Low Multiplicative Complexity) [ARS⁺15].
- Naor-Reingold PRF [NR04].
- MiMC (Minimum Multiplicative Complexity) [AGR⁺16].
- Legendre PRF [Dam88].
What PRF’s have we looked at?

- AES [DR01].
- **LowMC (Low Multiplicative Complexity) [ARS^+15].**
- Naor-Reingold PRF [NR04].
- MiMC (Minimum Multiplicative Complexity) [AGR^+16].
- Legendre PRF [Dam88].
Let’s play a game
Let’s play a game
AES - de-facto benchmark

- 960 multiplications
- 50 rounds
- Operations done in $\mathbb{F}_{2^{40}}$.

PRF on blocks
AES - de-facto benchmark

- 960 multiplications
- 50 rounds
- Operations done in \(\mathbb{F}_{2^{40}} \).

PRF on blocks

5 blocks/s
AES - de-facto benchmark

- 960 multiplications
- 50 rounds
- Operations done in $F_{2^{40}}$.

PRF on blocks

8ms latency
AES - de-facto benchmark

- 960 multiplications
- 50 rounds
- Operations done in $\mathbb{F}_{2^{40}}$.

530 blocks/s throughput
AES - de-facto benchmark

- Compare the PRF’s mod p with AES only for benchmarking purposes.
- In real world we want to keep all data in \mathbb{F}_p.
Naor-Reingold PRF

\[F_{NR(n)}(k, x) = g^{k_0 \cdot \prod_{i=1}^{n} x_i^k} \]

where \(k = (k_0, \ldots, k_n) \in \mathbb{F}_p^{n+1} \) is the key.
Naor-Reingold PRF

\[F_{NR}(n)(k, x) = g^{k_0 \cdot \prod_{i=1}^{n} k_i^x_i} \]

where \(k = (k_0, \ldots, k_n) \in \mathbb{F}_p^{n+1} \) is the key. Fortunately, in some applications the output must be public!
Naor-Reingold PRF

- Active security version for public output.
- $2 \cdot n$ multiplications.
- $3 + \log n + 1$ rounds.

EC based PRF
Naor-Reingold PRF

- Active security version for public output.
- $4n + 2$ multiplications.
- 7 rounds [BB89, CH10].

EC based PRF in constant round
Naor-Reingold PRF

- Active security version for public output.
- $4n + 2$ multiplications.
- 7 rounds [BB89, CH10].

EC based PRF in constant round

5 evals/s
Naor-Reingold PRF

- Active security version for public output.
- $4n + 2$ multiplications.
- 7 rounds [BB89, CH10].

EC based PRF in constant round

4.3ms latency
Naor-Reingold PRF

- Active security version for public output.
- $4n + 2$ multiplications.
- 7 rounds [BB89, CH10].

EC based PRF in constant round

370 blocks/s throughput
Naor-Reingold PRF

- Active security version for public output.
- \(4n + 2\) multiplications.
- 7 rounds [BB89, CH10].

Results have shown that over 70% of the time was spent on EC computations. Computation is the bottleneck, not communication!

EC based PRF in constant round
MiMC - How does it work?

Fig. 1: r rounds of MiMC-n/n

[AGR$^+$16]
MiMC PRF

- 146 multiplications
- 73 rounds
- 1 variant optimized for latency, other for throughput.

MiMC PRF - works in both worlds
MiMC PRF

- 146 multiplications
- 73 rounds
- 1 variant optimized for latency, other for throughput.

MiMC PRF - works in both worlds

34 blocks/s
MiMC PRF

- 146 multiplications
- 73 rounds
- 1 variant optimized for latency, other for throughput.

MiMC PRF - works in both worlds

6ms latency
MiMC PRF

- 146 multiplications
- 73 rounds
- 1 variant optimized for latency, other for throughput.

MiMC PRF - works in both worlds

9000 blocks/s throughput - 16x AES
Legendre PRF

In 1988, Damgård conjectured that this sequence is pseudorandom starting from a random seed k.

$$\left(\frac{k}{p} \right), \left(\frac{k + 1}{p} \right), \left(\frac{k + 2}{p} \right), \ldots$$
Legendre PRF - 1 bit output

- $\log p$ multiplications.
- $\log p$ rounds.

Legendre PRF - old version
Legendre PRF - 1 bit output

- $\log_2 2$ multiplications.
- $\log_2 3$ rounds.

Legendre PRF - new version
Legendre PRF - 1 bit output

- \(\log p \) 2 multiplications.
- \(\log p \) 3 rounds.

Legendre PRF - new version

1225 evals/s - 250x AES
Legendre PRF - 1 bit output

- $\log p$ 2 multiplications.
- $\log p$ 3 rounds.

Legendre PRF - new version

0.3ms latency - 25x faster AES
Legendre PRF - 1 bit output

- $\log p$ 2 multiplications.
- $\log p$ 3 rounds.

Legendre PRF - new version

202969 blocks/s throughput - 380x AES
How does it work?

Protocol \(\Pi_{\text{Legendre}} \)

Let \(\alpha \) be a fixed, quadratic non-residue modulo \(p \), i.e. \(\left(\frac{\alpha}{p} \right) = -1 \).

Eval: To evaluate \(F_{\text{Leg}(\text{bit})} \) on input \([x]\) with key \([k]\):

1. Take a random square \([s^2]\) and a random bit \([b]\)
2. \([t] \leftarrow [s^2] \cdot ([b] + \alpha \cdot (1 - [b]))\)
3. \(u \leftarrow \text{Open}([t] \cdot ([k] + [x]))\)
4. Output \([y] \leftarrow \left(\frac{u}{p} \right) \cdot (2[b] - 1)\)

Securely computing the \(F_{\text{Leg}(\text{bit})} \) PRF with shared output
How does it work?

Protocol Π_{Legendre}

Let α be a fixed, quadratic non-residue modulo p, i.e. $(\frac{\alpha}{p}) = -1$.

Eval: To evaluate $F_{\text{Leg(bit)}}$ on input $[x]$ with key $[k]$:

1. Take a random square $[s^2]$ and a random bit $[b]$
2. $[t] \leftarrow [s^2] \cdot ([1] + \alpha \cdot (1 - [1]))$
3. $u \leftarrow \text{Open}([s^2] \cdot ([k] + [x]))$
4. Output $[y] \leftarrow (\frac{u}{p}) \cdot (2 [1] - 1)$

Securely computing the $F_{\text{Leg(bit)}}$ PRF with shared output
How does it work?

Protocol \(\Pi_{\text{Legendre}} \)

Let \(\alpha \) be a fixed, quadratic non-residue modulo \(p \), i.e. \(\left(\frac{\alpha}{p} \right) = -1 \).

Eval: To evaluate \(F_{\text{Leg(bit)}} \) on input \([x]\) with key \([k]\):

1. Take a random square \([s^2]\) and a random bit \([b]\)
2. \([t] \leftarrow [s^2] \cdot ([0] + \alpha \cdot (1 - [0]))\)
3. \(u \leftarrow \text{Open}([s^2\alpha] \cdot ([k] + [x]))\)
4. Output \([y] \leftarrow (\frac{u}{p}) \cdot (2 [0] - 1)\)

Securely computing the \(F_{\text{Leg(bit)}} \) PRF with shared output
Security of Legendre PRF

Is it secure?
Security of Legendre PRF

Is it secure?

Yes, we give a reduction to the SLS problem: Given $\left(\frac{k+x}{p}\right)$, find x.

We have **efficiently** solved the problem of sending data between MPC engines.

- PRF's mod p in MPC are fast! Can you find other applications built on top of these?
- For proofs, WAN timings, other details, check out our paper!
Thank you!