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Various guarantees:

Privacy/Secrecy

Correctness

Fairness

etc.
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What is MPC?

Types:

Garbled circuits

Secret-sharing

Examples:

General MPC (e.g. SPDZ, MASCOT, Yao, etc.)

PSI

Auctions

Corruption Models:

Active/Passive

Static/Adaptive

etc.
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Goal

This work:

Goal

Communication-efficient actively-secure MPC arithmetic circuit
evaluation for any Q2 access structure.

as part of overarching goal:

Efficient1 MPC protocols for any access structure.

1communication/computation cost
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Related Work

Previous best-known protocol was due to Maurer [Mau06]:
passively-secure for Q2 structures, actively-secure for Q3.

Araki et al. [AFLNO16] give active security in the (3, 1)-threshold
case with efficient “hash-check” authentication.

Our contribution:

Generalise to any Q2 access structure for any number of
parties...

...and optimise the communication.

[Mau06] Secure Multi-party Computation Made Simple, Journal of
Discrete Applied Mathematics, 2006
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passively-secure for Q2 structures, actively-secure for Q3.

Araki et al. [AFLNO16] give active security in the (3, 1)-threshold
case with efficient “hash-check” authentication.

Our contribution:

Generalise to any Q2 access structure for any number of
parties...

...and optimise the communication2.

[Mau06] Secure Multi-party Computation Made Simple, Journal of
Discrete Applied Mathematics, 2006

[AFLNO16] High-Throughput Semi-Honest Secure Three-Party
Computation with an Honest Majority, CCS 2016

2Asymptotics are hard to give because it depends on the access structure
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Access Structures

Definition by example

{1, 2, 3, 4}

{1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}

{1} {2} {3} {4}

∅

Q2: union of no two unqualified sets is {1, 2, 3, 4}
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Access Structures

Check monotonicity
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Access Structures

Decide on remaining sets

{1, 2, 3, 4}

{1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}

{1} {2} {3} {4}

∅

Q2: union of no two unqualified sets is {1, 2, 3, 4}
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Access Structures

Determine maximally-unqualified sets

{1, 2, 3, 4}

{1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}

{1} {2} {3} {4}

∅

Q2: union of no two unqualified sets is {1, 2, 3, 4}
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Replicated Secret-sharing

Starting with the access structure

∆+ = {{1}, {2, 3}, {2, 4}, {3, 4}}

we obtain replicated secret sharing by taking the complements

B = {{2, 3, 4}, {1, 4}, {1, 3}, {1, 2}}

and sharing a secret s by letting

s = s{2,3,4} + s{1,4} + s{1,3} + s{1,2}

where {sB}B∈B
$← F subject to s =

∑
B∈B sB .

Then sB is sent to all parties whose party index is in B.

Denote by [[s]]
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Replicated Secret-sharing

s = s{2,3,4} + s{1,4} + s{1,3} + s{1,2}

Thus the parties have shares as follows:

P1 : s{1,2} s{1,3} s{1,4}

P2 : s{2,3,4} s{1,2}

P3 : s{2,3,4} s{1,3}

P4 : s{2,3,4} s{1,4}
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Linear operations for free

[[s]] + [[t]] :

P1 P2 P3 P4

[[s]] s{1,2} s{1,3} s{1,4} s{1,2} s{2,3,4} s{1,3} s{2,3,4} s{1,4} s{2,3,4}

+ + + + + + + + + +

[[t]] t{1,2} t{1,3} t{1,4} t{1,2} t{2,3,4} t{1,3} t{2,3,4} t{1,4} t{2,3,4}

= = = = = = = = = =

[[u]] u{1,2} u{1,3} u{1,4} u{1,2} u{2,3,4} u{1,3} u{2,3,4} u{1,4} u{2,3,4}
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– Multiplications: we will require

Tool 1: Passive multiplication
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Tool 1: Passive Multiplication

Theorem [1]

If Q2, each cross term is computable by at least one party.

P1 , P2 , P3 , P4 can compute an additive sharing of the product:

st = s{2,3,4} · t{2,3,4} + s{2,3,4} · t{1,4} + s{2,3,4} · t{1,3} + s{2,3,4} · t{1,2}

s{1,4} · t{2,3,4} + s{1,4} · t{1,4} + s{1,4} · t{1,3} + s{1,4} · t{1,2}

s{1,3} · t{2,3,4} + s{1,3} · t{1,4} + s{1,3} · t{1,3} + s{1,3} · t{1,2}

s{1,2} · t{2,3,4} + s{1,2} · t{1,4} + s{1,2} · t{1,3} + s{1,2} · t{1,2}

M1 ∪M2 ( P ∀M1,M2 ∈ ∆+

⇐⇒

B1 ∩ B2 6= ∅ ∀B1,B2 ∈ B
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Theorem [1]

If Q2, each cross term is computable by at least one party.

P1 , P2 , P3 , P4 can compute an additive sharing of the product:

st = s{2,3,4} · t{2,3,4} + s{2,3,4} · t{1,4} + s{2,3,4} · t{1,3} + s{2,3,4} · t{1,2}

s{1,4} · t{2,3,4} + s{1,4} · t{1,4} + s{1,4} · t{1,3} + s{1,4} · t{1,2}

s{1,3} · t{2,3,4} + s{1,3} · t{1,4} + s{1,3} · t{1,3} + s{1,3} · t{1,2}

s{1,2} · t{2,3,4} + s{1,2} · t{1,4} + s{1,2} · t{1,3} + s{1,2} · t{1,2}

E.g. P2 computes

u(2) := s{2,3,4} · t{1,2} + s{1,2} · t{2,3,4} + s{1,2} · t{1,2}
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Tool 1: Passive Multiplication – Maurer-style

Reshare each summand to get [[u(1)]], [[u(2)]], [[u(3)]] and [[u(4)]].

After all parties have reshared, sum shares locally:

[[v ]] := [[u(1)]] + [[u(2)]] + [[u(3)]] + [[u(4)]]
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Tool 1: Passive Multiplication – Araki-style

Look for some assignment of sets in B to parties3:

B1 := {{1, 4}}
B2 := {{1, 2}}
B3 := {{1, 3}}
B4 := {{2, 3, 4}}

such that

– every set assigned to Pi contains i

– every set is assigned to some party

– as many parties as possible are assigned at least one set

3Usually more sets than parties
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Tool 1: Passive Multiplication – Araki-style

Recall a PRZS: z(1) + z(2) + z(3) + z(4) = 0, use it to mask the
summands, and treat resulting shares as shares of the output.

P1 sets v{1,4} := u(1) + z (1) and sends to P4

P2 sets v{1,2} := u(2) + z (2) and sends to P1

P3 sets v{1,3} := u(3) + z (3) and sends to P1

P4 sets v{2,3,4} := u(4) + z (4) and sends to P2 and P3

P1 P2

P3P4
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Tool 1: Passive Multiplication – Araki-style

No further local computation (addition) needed: parties hold [[v ]].

Notice

– Not all parties communicate with each other;

– Total number of field elements sent is less than Maurer.
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Tool 2: Opening – Maurer-style

Every party broadcasts all of their shares.

Active security: every share is held by at least one honest party.

P1 P2

P3P4

ṽ{2,3,4} 6= v{2,3,4}

!

!!
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Tool 2: Opening – Araki-style

Use the assignment of sets to parties:

Party in charge of a share sends to all who do not hold it:

P1 P2

P3P4

v{1,3}

v{1,3}

B3 = {{1, 3}}
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Tool 2: Opening – Araki-style

Use the assignment of sets to parties:

Party in charge of a share sends to all who do not hold it:

P1 P2

P3P4

v{2,3,4}B4 = {{2, 3, 4}}
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Tool 2: Opening – Araki-style

Use the assignment of sets to parties:

Party in charge of a share sends to all who do not hold it:

Active security: Update hash function locally – all parties’ hashes
should agree:

P1 computes h1 := H(..., v{1,2}, v{1,3}, v{1,4}, ṽ{2,3,4}, ...)

P2 computes h2 := H(..., v{1,2}, ṽ{1,3}, ṽ{1,4}, v{2,3,4}, ...)

P3 computes h3 := H(..., ṽ{1,2}, v{1,3}, ṽ{1,4}, v{2,3,4}, ...)

P4 computes h4 := H(..., ṽ{1,2}, ṽ{1,3}, v{1,4}, v{2,3,4}, ...)

Batch-check to save on communication cost.
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Now to do the actual multiplication...
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Pre-processing Model

Offline/Online paradigm using Beaver’s circuit randomisation:

Multiply [[x ]] and [[y ]] online given a “triple” ([[a]], [[b]], [[ab]]) from
offline

[[xy ]] = (x + a)[[y ]] + (y + b)[[x ]] + [[ab]]− (x + a)(y + b)[[1]]

where

– (x + a) and (y + b) are opened secrets (i.e. use Tool 2:
Opening on [[x ]] + [[a]] and [[y ]] + [[b]])

– [[1]] is any valid sharing of the value 1

 Offline phase: generate lots of random triples
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Generating Triples: 1. Generate random values

One-time key agreement: parties in each B ∈ B agree on a key.

Then for each B ∈ B, compute aB := FkB (count) to obtain [[a]].

a{1,2} := Fk{1,2}(count)

a{1,3} := Fk{1,3}(count)

a{1,4} := Fk{1,4}(count)

a{2,3,4} := Fk{2,3,4}(count)

All parties increment count and then compute the shares as before:
bB := FkB (count); the parties obtain [[b]].
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Generating Triples: 2. Passively multiply

[[ab]] := [[a]] · [[b]]

Tool 1: Passive Multiplication
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Generating Triples: 3. Sacrifice for active security

Generate two triples,

([[a]], [[b]], [[ab]]) and ([[a′]], [[b′]], [[a′b′]])

Now use ([[a′]], [[b′]], [[a′b′]]) to check that

[[a]] · [[b]]− [[ab]] = 0



29/35

Goal

Goal

Communication-efficient actively-secure MPC arithmetic circuit
evaluation for any Q2 access structure.

Arithmetic circuits:

3 Additions: for free

– Multiplications: we will require

3 Tool 1: Passive multiplication – Araki-style

3 Tool 2: Efficient opening procedure – using hashing



29/35

Goal

Goal

Communication-efficient actively-secure MPC arithmetic circuit
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Costs

Comparison for a threshold access structure:

Tool 1: Passive Multiplication

Maurer-style Ours

# Channels4 n · (n − 1) n · (n − t − 1)

# Field elements n ·
(n
t

)
n · (n − t − 1)

Tool 2: Opening

Maurer-style Ours

# Channels4 n · (n − 1) 1
2 · n · (n − 1)

# Field elements n ·
(n
t

)
t ·
(n
t

)

4Uni-directional
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Implementation

https://github.com/KULeuven-COSIC/SCALE-MAMBA
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Thanks!

Questions?
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|∆+| > n?

If the number of replicated shares exceeds the number of parties:
e.g. (5, 2)-threshold:

∆+ := {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3},
{2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}}

gives

B = {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5},
{1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}}

Assignment as before: e.g.

B1 := {{1, 2, 3}, {1, 2, 4}} B4 := {{1, 4, 5}, {2, 4, 5}}
B2 := {{2, 3, 4}, {2, 3, 5}} B5 := {{1, 2, 5}, {1, 3, 5}}
B3 := {{3, 4, 5}, {1, 3, 4}}
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Optimisation using pre-shared keys

P1

P2

P3

P4

P5

Share index

123 124 125 134 135 145 234 235 245 345

u(1) − r1

u(2) − r2

u(3) − r3

u(4) − r4

u(5) − r5

r1

r1

r1

r2

r2

r2

r3

r3

r3

r4

r4

r4

r5

r5

r5

r1 := Fk{1,2,4}(count) r4 := Fk{2,4,5}(count)

r2 := Fk{2,3,5}(count) r5 := Fk{1,3,5}(count)

r3 := Fk{1,3,4}(count)
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