Reducing Communication Channels in MPC

1,2 1,3

Marcel Keller Dragos Rotaru
Nigel Smart 13 Tim Wood '3

LUniversity of Bristol

2Datab1

3KU Leuven/COSIC ESAT

Goal
Generalising
MPC Tools

Performing MPC

2/35

Goal
Generalising
MPC Tools

Performing MPC

3/35

4/35

P;

Py
Pe

P3
Py

4/35

What is MPC?

N
Ps /\ P>

P, P;

Pe P1

What is MPC?

What is MPC?

%

What is MPC?

P;
Pe P1

e
Ps /"\ P>

P, Ps

Various guarantees:
Privacy/Secrecy
Correctness
Fairness

etc.

%

What is MPC?

Types:
Garbled circuits

Secret-sharing

What is MPC?

Types:
Garbled circuits

Secret-sharing

Examples:
General MPC (e.g. SPDZ, MASCOT, Yao, etc.)
PSI

Auctions

What is MPC?

Types:
Garbled circuits

Secret-sharing

Examples:
General MPC (e.g. SPDZ, MASCOT, Yao, etc.)
PSI

Auctions

Corruption Models:
Active/Passive
Static/Adaptive

etc.

Goal

This work:
Goal

Communication-efficient actively-secure MPC arithmetic circuit
evaluation for any Q) access structure.

as part of overarching goal:

Efficient! MPC protocols for any access structure.

! communication /computation cost

Related Work

Previous best-known protocol was due to Maurer [Mau06]:
passively-secure for Qy structures, actively-secure for Q3.

[Mau06] Secure Multi-party Computation Made Simple, Journal of
Discrete Applied Mathematics, 2006

Related Work

Previous best-known protocol was due to Maurer [Mau06]:
passively-secure for Qy structures, actively-secure for Q3.

Araki et al. [AFLNO16] give active security in the (3, 1)-threshold
case with efficient “hash-check” authentication.

[Mau06] Secure Multi-party Computation Made Simple, Journal of
Discrete Applied Mathematics, 2006

[AFLNO16] High-Throughput Semi-Honest Secure Three-Party
Computation with an Honest Majority, CCS 2016

Related Work

Previous best-known protocol was due to Maurer [Mau06]:
passively-secure for Qy structures, actively-secure for Q3.

Araki et al. [AFLNO16] give active security in the (3, 1)-threshold
case with efficient “hash-check” authentication.

Our contribution:
Generalise to any Q» access structure for any number of
parties...

...and optimise the communication?.

[Mau06] Secure Multi-party Computation Made Simple, Journal of
Discrete Applied Mathematics, 2006

[AFLNO16] High-Throughput Semi-Honest Secure Three-Party
Computation with an Honest Majority, CCS 2016

2 Asymptotics are hard to give because it depends on the access structure

Goal
Generalising
MPC Tools

Performing MPC

8/35

Access Structures

Definition by example

{1234}
{1,2,3} {124} {134} (2,3,4)

PN

{1,2}y {1,3} {1,4} {2,3} {2,4} {3,4}

AP/

{1} {4}

\\//

Q>: union of no two unqualified sets is {1, 2, 3,4}

Access Structures

Specify minimally qualified sets

{1234}

_— /N T~

(1,2,3} {1,2,4} {1,3,4} |{2.3,4}

JIXHZNK

{12} [{L3] (14 {23} {24 (3.4

/

{4}

\\//

Q>: union of no two unqualified sets is {1, 2, 3,4}

Access Structures

Check monotonicity

{1,2,3,4}

(1,23} [{1,2,4}] [{1.3.41] [{2,3,4}

e 7aVa

{12h] [{L3)] {14} {23} 12,4} (3.4}

{1} {2}’ {3} {4}

\//

Q>: union of no two unqualified sets is {1,2,3,4}

Access Structures

Decide on remaining sets

{1,2,3,4}

{1,2,3}

{1,2,4}

{1,3,4} {2,3,4}

e 7aNa A

\{1 2}\ \{1 3}\

{1,4}

{1}

{2}

(2,3} {24} (3,4}

/

{3} {4}

\//

Q>: union of no two unqualified sets is {1,2,3,4}

Access Structures

Determine maximally-unqualified sets

{1,2,3,4}

(1,2,3}[[{1.2,4}] [{1.3,4}] [{2.3,4}

{12} {13 {14 1{2,3} {2 4} {3 4}j

{1} {2} 3} {4

\//

Q>: union of no two unqualified sets is {1,2,3,4}

Replicated Secret-sharing

Starting with the access structure

AT = {{1}7 {27 3}7 {27 4}7 {37 4}}

we obtain replicated secret sharing by taking the complements

B={{2,3,4},{1,4},{1,3},{1,2}}

and sharing a secret s by letting
$ =S[23.4} + 51,4} + 513} + 512}

where {sg}gen B subject to s =) 5.3 58-
Then sg is sent to all parties whose party index is in B.

Denote by [s]

Replicated Secret-sharing

S = S(234} tS[1.4} + 5713} + S{1,2}

Thus the parties have shares as follows:

Py S{12} S{1.3} S[14)
Pa: spp341 S[12)
P3: s34 (1,3}

Pa: sp3a 51,4}

Linear operations for free

[s] + <] -
P P, P; Py
[s] | sy S(u3y Sqay | S(r2y S(234) | S{3) S(23.4) | S(14) S{2,34)
+ |+ + + + + + + + +
[t | tazy tpsy tpey |ty tesay | oty tesey | tey o tese
I Il Il I Il I Il Il Il Il
|IU]| U{1,2} u{1,3} U{1,4} U{1,2} U{2,3,4} U{1,3} U{2,3,4} U{1,4y U{23,4}

Goal

Goal

Communication-efficient actively-secure MPC arithmetic circuit
evaluation for any Q) access structure.

Arithmetic circuits:
— Additions

— Multiplications

Goal

Goal

Communication-efficient actively-secure MPC arithmetic circuit
evaluation for any Q) access structure.

Arithmetic circuits:
v Additions: for free

— Multiplications

Goal

Goal

Communication-efficient actively-secure MPC arithmetic circuit
evaluation for any Q) access structure.

Arithmetic circuits:
v/ Additions: for free
— Multiplications: we will require
Tool 1: Passive multiplication

Tool 2: Efficient opening procedure

Goal
Generalising
MPC Tools

Performing MPC

14/35

Tool 1: Passive Multiplication

Theorem [1]
If Oy, each cross term is computable by at least one party.

Pi, P>, P3, P4 can compute an additive sharing of the product:

St = Sfp34} " t234} + S{234} t{iar t S{234) ct13 + S[23.4) 12}

S{1,4} - t{234} + S{14} - t{1,4} + St1,43 - tri3y + S{14y c t{i2)
S{1,3} * t{2.34} + S{1,3} ° t{1,4} + Sp13) c tri3y +oS{13) c t{a2)
S{1,2} * t{2,34} + S{1,2} - t{1,4} + Sp12) tri3y + S{12) c t{i2)

MiUM, CP VMl,M2€A+
<~
BlﬁBQ#Q VBl,BQGB

Tool 1: Passive Multiplication

Theorem [1]
If Q», each cross term is computable by at least one party.

Pi. P>, Ps, Py can compute an additive sharing of the product:

St = Sfp34} " t234} + S{234} triar t S{234) t13 + S[234) 12y

S{1,4} - t{234} + S{14} - t{1,4} + Sp143 - truzy + S{ray c t{iog
S{1,3} - t{234} + S{1.3} " t{1,4} + S{13) sty T oS{3y c tao)
S{1,2} - t{234} + S{1,2} * t{1,4} + St} tru3y t+ S{12y c t12)

E.g. P, computes

u® = S(2,3,4) " tri2y + S{12y - tro34r + Spu2) cti2

Tool 1: Passive Multiplication — Maurer-style

Reshare each summand to get [uM], [u®], [u®)] and [u®].

Tool 1: Passive Multiplication — Maurer-style
Reshare each summand to get [uM], [u®], [u®)] and [u®].

E.g. P; additively splits u(V) as

_ @ (1) (1) (1)
u® = Uyoy T Uy T Uiy T U3 4

and sends shares

Tool 1: Passive Multiplication — Maurer-style
Reshare each summand to get [uM], [u®], [u®)] and [u®].

E.g. P; additively splits u(V) as

_ @ (1) (1) (1)
o =y + gy + iy + Ul
and sends shares

e

Tool 1: Passive Multiplication — Maurer-style
Reshare each summand to get [uM], [u®], [u®)] and [u®].

E.g. P; additively splits u(V) as

_ @ (1) (1) (1)
u® = Uyoy T Uy T Uiy T U3 4

and sends shares

]

(1)
Y13

]

Tool 1: Passive Multiplication — Maurer-style
Reshare each summand to get [uM], [u®], [u®)] and [u®].

E.g. P; additively splits u(V) as

_ @ (1) (1) (1)
u® = Uyoy T Uy T Uiy T U3 4

and sends shares

A

(1)
Ui1ay

s

Tool 1: Passive Multiplication — Maurer-style
Reshare each summand to get [uM], [u®], [u®)] and [u®].

E.g. P; additively splits u(V) as

_ @ (1) (1) (1)
u® = Uyoy T Uy T Uiy T U3 4

and sends shares

e

’FT {2,3,4} .

(1) (1)
Urr 34y YUto3.4)

[Pd] [Ps]

Tool 1: Passive Multiplication — Maurer-style
Reshare each summand to get [uM], [u®], [u®)] and [u®].

After all parties have reshared, sum shares locally:

V] = W] + [+ 6] + [4]

Tool 1: Passive Multiplication — Araki-style

Look for some assignment of sets in B to parties:

Bi = {{1,4}}
By .= {{1,2}}
Bs :={{1,3}}
Ba = {{2,3,4}}

such that
— every set assigned to P; contains i
— every set is assigned to some party

— as many parties as possible are assigned at least one set

3Usually more sets than parties

Tool 1: Passive Multiplication — Araki-style

Recall a PRZS: z() + 2(2) 4 203) 4 z(4) = 0, use it to mask the
summands, and treat resulting shares as shares of the output.

P1 sets vy1 4y := u® 4+ z(Y) and sends to P,
P> sets vy1 2y i= u® 4+ 22 and sends to P;
Ps sets vq1 3y := u® 4+ 23 and sends to P,

Py sets vy 34y := u® 4+ z* and sends to P, and Ps

Tool 1: Passive Multiplication — Araki-style

Recall a PRZS: z() + 2(2) 4 203) 4 z(4) = 0, use it to mask the
summands, and treat resulting shares as shares of the output.
P1 sets vy1 4y := u® 4+ z(Y) and sends to P,
P> sets vy1 2y i= u® 4+ 22 and sends to P;
Ps sets vq1 3y := u® 4+ 23 and sends to P,

Py sets vy 34y := u® 4+ z* and sends to P, and Ps

Tool 1: Passive Multiplication — Araki-style

Recall a PRZS: z() + 2(2) 4 203) 4 z(4) = 0, use it to mask the
summands, and treat resulting shares as shares of the output.

P1 sets vy1 4y := u® 4+ z(Y) and sends to P,
P> sets vy1 2y i= u® 4+ 22 and sends to P;
Ps sets vq1 3y := u® 4+ 23 and sends to P,

Py sets vy 34y := u® 4+ z* and sends to P, and Ps

Tool 1: Passive Multiplication — Araki-style

Recall a PRZS: z() + 2(2) 4 203) 4 z(4) = 0, use it to mask the
summands, and treat resulting shares as shares of the output.
P1 sets vy1 4y := u® 4+ z(Y) and sends to P,
P> sets vy1 2y i= u® 4+ 22 and sends to P;
Ps sets vq1 3y := u® 4+ 23 and sends to P,

Py sets vy 34y := u® 4+ z* and sends to P, and Ps

Tool 1: Passive Multiplication — Araki-style

Recall a PRZS: z() + 2(2) 4 203) 4 z(4) = 0, use it to mask the
summands, and treat resulting shares as shares of the output.
P1 sets vy1 4y := u® 4+ z(Y) and sends to P,
P> sets vy1 2y i= u® 4+ 22 and sends to P;
Ps sets vq1 3y := u® 4+ 23 and sends to P,

Py sets vy 34y := u® 4+ z* and sends to P, and Ps

Tool 1: Passive Multiplication — Araki-style

No further local computation (addition) needed: parties hold [v].
Notice

— Not all parties communicate with each other;

— Total number of field elements sent is less than Maurer.

Goal

Goal

Communication-efficient actively-secure MPC arithmetic circuit
evaluation for any Q) access structure.

Arithmetic circuits:
v/ Additions: for free
— Multiplications: we will require
Tool 1: Passive multiplication

Tool 2: Efficient opening procedure

Goal

Goal

Communication-efficient actively-secure MPC arithmetic circuit
evaluation for any Q) access structure.

Arithmetic circuits:
v Additions: for free
— Multiplications: we will require
v Tool 1: Passive multiplication — Araki-style

Tool 2: Efficient opening procedure

Tool 2: Opening — Maurer-style

Every party broadcasts all of their shares.

Active security: every share is held by at least one honest party.

Tool 2: Opening — Maurer-style

Every party broadcasts all of their shares.

Active security: every share is held by at least one honest party.

Tool 2: Opening — Maurer-style

Every party broadcasts all of their shares.
Active security: every share is held by at least one honest party.

Vi2.34} % V(2,3.4)

Tool 2: Opening — Araki-style
Use the assignment of sets to parties:

Party in charge of a share sends to all who do not hold it:

Tool 2: Opening — Araki-style
Use the assignment of sets to parties:

Party in charge of a share sends to all who do not hold it:

Bl = {{17 4}}

Vi1,4y

Tool 2: Opening — Araki-style
Use the assignment of sets to parties:

Party in charge of a share sends to all who do not hold it:

By = {{17 2}}

Vi1,2)

Tool 2: Opening — Araki-style
Use the assignment of sets to parties:

Party in charge of a share sends to all who do not hold it:

Bs = {{17 3}}

Tool 2: Opening — Araki-style
Use the assignment of sets to parties:

Party in charge of a share sends to all who do not hold it:

By = {{27 3, 4}}

Tool 2: Opening — Araki-style
Use the assignment of sets to parties:

Party in charge of a share sends to all who do not hold it:

Active security: Update hash function locally — all parties’ hashes
should agree:

P

P1 computes hy := H(..., v{1 2}, V{1,3}s V{1,4}5 V{2,34} -

(..

P> computes hy := H(7 V{1,2}s \//{_]?3/}, V/{_]?;}, V{2,3.4}; -

P3 Computes h3 = H(, V{1’2}, V{173}, V{174}, V{27374},
(..

P4 computes hy := H

~— — — —

y V{1,235 V{1,3}> V{1,4}> V{2,3,4}> ---

Batch-check to save on communication cost.

Goal

Goal

Communication-efficient actively-secure MPC arithmetic circuit
evaluation for any Q) access structure.

Arithmetic circuits:
v Additions: for free
— Multiplications: we will require
v Tool 1: Passive multiplication — Araki-style

Tool 2: Efficient opening procedure

Goal

Goal

Communication-efficient actively-secure MPC arithmetic circuit
evaluation for any Q) access structure.

Arithmetic circuits:
v Additions: for free
— Multiplications: we will require
v Tool 1: Passive multiplication — Araki-style

v Tool 2: Efficient opening procedure — using hashing

Goal

Goal

Communication-efficient actively-secure MPC arithmetic circuit
evaluation for any Q) access structure.

Arithmetic circuits:
v/ Additions: for free
— Multiplications: we will require
v Tool 1: Passive multiplication — Araki-style

v Tool 2: Efficient opening procedure — using hashing

Now to do the actual multiplication...

Goal
Generalising
MPC Tools

Performing MPC

24/35

Pre-processing Model
Offline/Online paradigm using Beaver's circuit randomisation:

Multiply [x] and [y] online given a “triple” ([a], [b], [ab]) from
offline

[yl = (x + a)lyl + (v + b)Ix] + [ab] — (x + a)(y + b)[1]

where
— (x+ a) and (y + b) are opened secrets (i.e. use Tool 2:
Opening on [x] + [a] and [y] + [£])
— [1] is any valid sharing of the value 1

~> Offline phase: generate lots of random triples

Generating Triples: 1. Generate random values

One-time key agreement: parties in each B € B agree on a key.
Then for each B € B, compute ag := Fy,(count) to obtain [a].

a1} = Fk{m}(count)
a3y = Fk{lﬂ(count)
a(1,4} := Fi 4 (count)

a34) = Fk{2’3,4}(count)

All parties increment count and then compute the shares as before:
bg := Fig(count); the parties obtain [b].

Generating Triples: 2. Passively multiply

Tool 1: Passive Multiplication

[ab] = [a] - [&]

Generating Triples: 3. Sacrifice for active security

Generate two triples,

([al. [6]. [25]) and ([a], [£], ['6T)
Now use ([&'], [¢], [a'b]) to check that

[a] - [6] — [ab] = O

Goal

Goal

Communication-efficient actively-secure MPC arithmetic circuit
evaluation for any Q) access structure.

Arithmetic circuits:
v Additions: for free
— Multiplications: we will require
v Tool 1: Passive multiplication — Araki-style

v Tool 2: Efficient opening procedure — using hashing

Goal

Goal

Communication-efficient actively-secure MPC arithmetic circuit
evaluation for any Q) access structure.

Arithmetic circuits:
v Additions: for free
v/ Multiplications: we will require
v Tool 1: Passive multiplication — Araki-style

v Tool 2: Efficient opening procedure — using hashing

Costs

Comparison for a threshold access structure:

Tool 1: Passive Multiplication

‘ Maurer-style ‘ Ours
Channels* n-(n=1) | n-(n—t—1)
Field elements n-(7) n-(n—t—1)

Tool 2: Opening

‘ Maurer-style ‘ Ours
n-(n—1) | 3-n-(n—1)

n- () t-(7)

Channels*
Field elements

4Uni-directional

Implementation

https://github.com/KULeuven-COSIC/SCALE-MAMBA

Thanks!

Questions?

33/35

|AT| > n?

If the number of replicated shares exceeds the number of parties:
e.g. (5,2)-threshold:
At = {{1, 2}a {17 3}’ {1a 4}7 {1’ 5}a {27 3}?
{2,4},{2,5},{3,4},{3,5},{4,5}}

gives

B={{1,2,3},{1,2,4},{1,2,5},{1,3,4},{1, 3,5},
{1,4,5},{2,3,4},{2,3,5},{2,4,5},{3,4,5}}
Assignment as before: e.g.
B1 :={{1,2,3},{1,2,4}} Ba = {{1,4,5},{2,4,5}}
By :={{2,3,4},{2,3,5}} Bs = {{1,2,5},{1,3,5}}
B3 = {{3,4,5},{1,3,4}}

Optimisation using pre-shared keys

Share index
123 124 125 134 135 145 234 235 245 345

Pr uW—_—p n r3 I's
P> n u@ —p, n Iy
P; rs rs ra u® —
P, n r u® — ra rs
P5 u(5) — Iy Is J’ rn ra
n = Fig o (count) r = Fk{2,415}(count)
r = Fy, 5.5 (count) rs := Fi, 5.5 (count)

1= Frpsa (count)

	Goal
	Generalising
	MPC Tools
	Performing MPC

