Reducing Communication Channels in MPC

Marcel Keller 1,2 Dragos Rotaru 1,3
Nigel Smart ${ }^{1,3}$ Tim Wood ${ }^{1,3}$
${ }^{1}$ University of Bristol
${ }^{2}$ Data61
${ }^{3}$ KU Leuven/COSIC ESAT

Outline

Goal

Generalising

MPC Tools

Performing MPC

Outline

Goal

Generalising

MPC Tools

Performing MPC

What is MPC?

What is MPC?

$$
\begin{array}{cccc}
& & P_{7} & \\
P_{6} & & & P_{1} \\
& & & \\
P_{5} & & F & \\
& & & \\
& P_{4} & & P_{3}
\end{array}
$$

What is MPC?

What is MPC?

What is MPC?

What is MPC?

Various guarantees:
Privacy/Secrecy
Correctness
Fairness
etc.

What is MPC?

Types:
Garbled circuits
Secret-sharing

What is MPC?

Types:

Garbled circuits
Secret-sharing

Examples:
General MPC (e.g. SPDZ, MASCOT, Yao, etc.)
PSI
Auctions

What is MPC?

Types:
Garbled circuits
Secret-sharing

Examples:
General MPC (e.g. SPDZ, MASCOT, Yao, etc.)
PSI
Auctions

Corruption Models:
Active/Passive
Static/Adaptive
etc.

Goal

This work:

Goal

Communication-efficient actively-secure MPC arithmetic circuit evaluation for any \mathcal{Q}_{2} access structure.
as part of overarching goal:

Efficient ${ }^{1}$ MPC protocols for any access structure.

Related Work

Previous best-known protocol was due to Maurer [Mau06]: passively-secure for \mathcal{Q}_{2} structures, actively-secure for \mathcal{Q}_{3}.
[Mau06] Secure Multi-party Computation Made Simple, Journal of Discrete Applied Mathematics, 2006

Related Work

Previous best-known protocol was due to Maurer [Mau06]: passively-secure for \mathcal{Q}_{2} structures, actively-secure for \mathcal{Q}_{3}.

Araki et al. [AFLNO16] give active security in the (3,1)-threshold case with efficient "hash-check" authentication.
[Mau06] Secure Multi-party Computation Made Simple, Journal of Discrete Applied Mathematics, 2006
[AFLNO16] High-Throughput Semi-Honest Secure Three-Party Computation with an Honest Majority, CCS 2016

Related Work

Previous best-known protocol was due to Maurer [Mau06]: passively-secure for \mathcal{Q}_{2} structures, actively-secure for \mathcal{Q}_{3}.

Araki et al. [AFLNO16] give active security in the (3,1)-threshold case with efficient "hash-check" authentication.

Our contribution:
Generalise to any \mathcal{Q}_{2} access structure for any number of parties...
...and optimise the communication ${ }^{2}$.
[Mau06] Secure Multi-party Computation Made Simple, Journal of Discrete Applied Mathematics, 2006
[AFLNO16] High-Throughput Semi-Honest Secure Three-Party Computation with an Honest Majority, CCS 2016
${ }^{2}$ Asymptotics are hard to give because it depends on the access structure

Outline

Goal

Generalising
MPC Tools

Performing MPC

Access Structures

Definition by example

\mathcal{Q}_{2} : union of no two unqualified sets is $\{1,2,3,4\}$

Access Structures

Specify minimally qualified sets

\mathcal{Q}_{2} : union of no two unqualified sets is $\{1,2,3,4\}$

Access Structures

Check monotonicity

\mathcal{Q}_{2} : union of no two unqualified sets is $\{1,2,3,4\}$

Access Structures

Decide on remaining sets

\mathcal{Q}_{2} : union of no two unqualified sets is $\{1,2,3,4\}$

Access Structures

Determine maximally-unqualified sets

\mathcal{Q}_{2} : union of no two unqualified sets is $\{1,2,3,4\}$

Replicated Secret-sharing

Starting with the access structure

$$
\Delta^{+}=\{\{1\},\{2,3\},\{2,4\},\{3,4\}\}
$$

we obtain replicated secret sharing by taking the complements

$$
\mathcal{B}=\{\{2,3,4\},\{1,4\},\{1,3\},\{1,2\}\}
$$

and sharing a secret s by letting

$$
s=s_{\{2,3,4\}}+s_{\{1,4\}}+s_{\{1,3\}}+s_{\{1,2\}}
$$

where $\left\{s_{B}\right\}_{B \in \mathcal{B}} \stackrel{\S}{\leftarrow} \mathbb{F}$ subject to $s=\sum_{B \in \mathcal{B}} s_{B}$.
Then s_{B} is sent to all parties whose party index is in B.
Denote by $\llbracket s \rrbracket$

Replicated Secret-sharing

$$
s=s_{\{2,3,4\}}+s_{\{1,4\}}+s_{\{1,3\}}+s_{\{1,2\}}
$$

Thus the parties have shares as follows:

$$
\begin{array}{lllll}
P_{1}: & & s_{\{1,2\}} & s_{\{1,3\}} & s_{\{1,4\}} \\
P_{2}: & s_{\{2,3,4\}} & s_{\{1,2\}} & & \\
P_{3}: & s_{\{2,3,4\}} & & s_{\{1,3\}} & \\
P_{4}: & s_{\{2,3,4\}} & & & s_{\{1,4\}}
\end{array}
$$

Linear operations for free

$$
\llbracket \varsigma \rrbracket+\llbracket t \rrbracket:
$$

	P_{1}			P_{2}		P_{3}		P_{4}		
【s】	$S_{\{1,2\}}$	$S_{\{1,3\}}$	$S_{\{1,4\}}$	$S_{\{1,2\}}$	$S_{\{2,3,4\}}$	$S_{\{1,3\}}$	$S_{\{2,3,4\}}$	$S_{\{1,4\}}$	$S_{\{2,3,4\}}$	
$+$	+	+	$+$	+	+	+	$+$	$+$	+	
$\llbracket t \rrbracket$	$t_{\{1,2\}}$	$t_{\{1,3\}}$	$t_{\{1,4\}}$	$t_{\{1,2\}}$	$t_{\{2,3,4\}}$	$t_{\{1,3\}}$	$t_{\{2,3,4\}}$	$t_{\{1,4\}}$	$t_{\{2,3,4\}}$	
11	11	11	11	11	11	11	\|		11	11
$\llbracket u \rrbracket$	$u_{\{1,2\}}$	$u_{\{1,3\}}$	$u_{\{1,4\}}$	$u_{\{1,2\}}$	$u_{\{2,3,4\}}$	$u_{\{1,3\}}$	$u_{\{2,3,4\}}$	$u_{\{1,4\}}$	$u_{\{2,3,4\}}$	

Goal

Goal

Communication-efficient actively-secure MPC arithmetic circuit evaluation for any \mathcal{Q}_{2} access structure.

Arithmetic circuits:

- Additions
- Multiplications

Goal

Goal

Communication-efficient actively-secure MPC arithmetic circuit evaluation for any \mathcal{Q}_{2} access structure.

Arithmetic circuits:
\checkmark Additions: for free

- Multiplications

Goal

Goal

Communication-efficient actively-secure MPC arithmetic circuit evaluation for any \mathcal{Q}_{2} access structure.

Arithmetic circuits:

\checkmark Additions: for free

- Multiplications: we will require

Tool 1: Passive multiplication
Tool 2: Efficient opening procedure

Outline

Goal

Generalising

MPC Tools

Performing MPC

Tool 1: Passive Multiplication

Theorem [1]

If \mathcal{Q}_{2}, each cross term is computable by at least one party.
$P_{1}, P_{2}, P_{3}, P_{4}$ can compute an additive sharing of the product:

$$
\left.\begin{array}{rl}
s t= & s_{\{2,3,4\}} \cdot t_{\{2,3,4\}}+s_{\{2,3,4\}} \cdot t_{\{1,4\}} \\
& +s_{\{2,3,4\}} \cdot t_{\{1,3\}}+s_{\{2,3,4\}} \cdot t_{\{1,2\}} \\
& s_{\{1,3\}} \cdot t_{\{2,3,4\}}+t_{\{2,3,4\}}+s_{\{1,4\}} \cdot t_{\{1,4\}} \\
& +s_{\{1,3\}} \cdot t_{\{1,4\}} \cdot t_{\{1,3\}}+s_{\{1,4\}} \cdot t_{\{1,2\}} \\
& s_{\{1,2\}} \cdot t_{\{2,3,4\}}+s_{\{1,3\}} \cdot t_{\{1,3\}}+s_{\{1,3\}} \cdot t_{\{1,2\}} \\
& s_{\{1,2\}} \cdot t_{\{1,4\}}
\end{array} \quad+s_{\{1,2\}} \cdot t_{\{1,3\}}+s_{\{1,2\}} \cdot t_{\{1,2\}}\right\}
$$

$M_{1} \cup M_{2} \subsetneq \mathcal{P} \quad \forall M_{1}, M_{2} \in \Delta^{+}$

$$
B_{1} \cap B_{2} \neq \varnothing \quad \forall B_{1}, B_{2} \in \mathcal{B}
$$

Tool 1: Passive Multiplication

Theorem [1]

If \mathcal{Q}_{2}, each cross term is computable by at least one party.
$P_{1}, P_{2}, P_{3}, P_{4}$ can compute an additive sharing of the product:

$$
\left.\begin{array}{rl}
s t= & s_{\{2,3,4\}} \cdot t_{\{2,3,4\}}+s_{\{2,3,4\}} \cdot t_{\{1,4\}}
\end{array}+s_{\{2,3,4\}} \cdot t_{\{1,3\}}+s_{\{2,3,4\}} \cdot t_{\{1,2\}}\right)
$$

E.g. P_{2} computes

$$
u^{(2)}:=s_{\{2,3,4\}} \cdot t_{\{1,2\}}+s_{\{1,2\}} \cdot t_{\{2,3,4\}}+s_{\{1,2\}} \cdot t_{\{1,2\}}
$$

Tool 1: Passive Multiplication - Maurer-style

Reshare each summand to get $\llbracket u^{(1)} \rrbracket, \llbracket u^{(2)} \rrbracket, \llbracket u^{(3)} \rrbracket$ and $\llbracket u^{(4)} \rrbracket$.

Tool 1: Passive Multiplication - Maurer-style

Reshare each summand to get $\llbracket u^{(1)} \rrbracket, \llbracket u^{(2)} \rrbracket, \llbracket u^{(3)} \rrbracket$ and $\llbracket u^{(4)} \rrbracket$.
E.g. P_{1} additively splits $u^{(1)}$ as

$$
u^{(1)}=u_{\{1,2\}}^{(1)}+u_{\{1,3\}}^{(1)}+u_{\{1,4\}}^{(1)}+u_{\{2,3,4\}}^{(1)}
$$

and sends shares

$$
\begin{array}{|l|l|}
\hline P_{1} & P_{2} \\
\hline
\end{array}
$$

$$
P_{4} \quad P_{3}
$$

Tool 1: Passive Multiplication - Maurer-style

Reshare each summand to get $\llbracket u^{(1)} \rrbracket, \llbracket u^{(2)} \rrbracket, \llbracket u^{(3)} \rrbracket$ and $\llbracket u^{(4)} \rrbracket$.
E.g. P_{1} additively splits $u^{(1)}$ as

$$
u^{(1)}=u_{\{1,2\}}^{(1)}+u_{\{1,3\}}^{(1)}+u_{\{1,4\}}^{(1)}+u_{\{2,3,4\}}^{(1)}
$$

and sends shares

$$
P_{1} \xrightarrow{u_{\{1,2\}}^{(1)}} \longrightarrow P_{2}
$$

$$
\begin{array}{ll}
P_{4} & P_{3} \\
\hline
\end{array}
$$

Tool 1: Passive Multiplication - Maurer-style

Reshare each summand to get $\llbracket u^{(1)} \rrbracket, \llbracket u^{(2)} \rrbracket, \llbracket u^{(3)} \rrbracket$ and $\llbracket u^{(4)} \rrbracket$.
E.g. P_{1} additively splits $u^{(1)}$ as

$$
u^{(1)}=u_{\{1,2\}}^{(1)}+u_{\{1,3\}}^{(1)}+u_{\{1,4\}}^{(1)}+u_{\{2,3,4\}}^{(1)}
$$

and sends shares

Tool 1: Passive Multiplication - Maurer-style

Reshare each summand to get $\llbracket u^{(1)} \rrbracket, \llbracket u^{(2)} \rrbracket, \llbracket u^{(3)} \rrbracket$ and $\llbracket u^{(4)} \rrbracket$.
E.g. P_{1} additively splits $u^{(1)}$ as

$$
u^{(1)}=u_{\{1,2\}}^{(1)}+u_{\{1,3\}}^{(1)}+u_{\{1,4\}}^{(1)}+u_{\{2,3,4\}}^{(1)}
$$

and sends shares

Tool 1: Passive Multiplication - Maurer-style

Reshare each summand to get $\llbracket u^{(1)} \rrbracket, \llbracket u^{(2)} \rrbracket, \llbracket u^{(3)} \rrbracket$ and $\llbracket u^{(4)} \rrbracket$.
E.g. P_{1} additively splits $u^{(1)}$ as

$$
u^{(1)}=u_{\{1,2\}}^{(1)}+u_{\{1,3\}}^{(1)}+u_{\{1,4\}}^{(1)}+u_{\{2,3,4\}}^{(1)}
$$

and sends shares

Tool 1: Passive Multiplication - Maurer-style

Reshare each summand to get $\llbracket u^{(1)} \rrbracket, \llbracket u^{(2)} \rrbracket, \llbracket u^{(3)} \rrbracket$ and $\llbracket u^{(4)} \rrbracket$.
After all parties have reshared, sum shares locally:

$$
\llbracket v \rrbracket:=\llbracket u^{(1)} \rrbracket+\llbracket u^{(2)} \rrbracket+\llbracket u^{(3)} \rrbracket+\llbracket u^{(4)} \rrbracket
$$

Tool 1: Passive Multiplication - Araki-style

Look for some assignment of sets in \mathcal{B} to parties ${ }^{3}$:

$$
\begin{aligned}
& \mathcal{B}_{1}:=\{\{1,4\}\} \\
& \mathcal{B}_{2}:=\{\{1,2\}\} \\
& \mathcal{B}_{3}:=\{\{1,3\}\} \\
& \mathcal{B}_{4}:=\{\{2,3,4\}\}
\end{aligned}
$$

such that

- every set assigned to P_{i} contains i
- every set is assigned to some party
- as many parties as possible are assigned at least one set

[^0]
Tool 1: Passive Multiplication - Araki-style

Recall a PRZS: $z^{(1)}+z^{(2)}+z^{(3)}+z^{(4)}=0$, use it to mask the summands, and treat resulting shares as shares of the output.

$$
\begin{aligned}
P_{1} \text { sets } v_{\{1,4\}} & :=u^{(1)}+z^{(1)} \text { and sends to } P_{4} \\
P_{2} \text { sets } v_{\{1,2\}} & :=u^{(2)}+z^{(2)} \text { and sends to } P_{1} \\
P_{3} \text { sets } v_{\{1,3\}} & :=u^{(3)}+z^{(3)} \text { and sends to } P_{1} \\
P_{4} \text { sets } v_{\{2,3,4\}} & :=u^{(4)}+z^{(4)} \text { and sends to } P_{2} \text { and } P_{3}
\end{aligned}
$$

$$
\begin{array}{|l|l|}
\hline P_{1} & P_{2} \\
\hline
\end{array}
$$

$$
P_{4}
$$

$$
P_{3}
$$

Tool 1: Passive Multiplication - Araki-style

Recall a PRZS: $z^{(1)}+z^{(2)}+z^{(3)}+z^{(4)}=0$, use it to mask the summands, and treat resulting shares as shares of the output.
P_{1} sets $v_{\{1,4\}}:=u^{(1)}+z^{(1)}$ and sends to P_{4}
P_{2} sets $v_{\{1,2\}}:=u^{(2)}+z^{(2)}$ and sends to P_{1}
P_{3} sets $v_{\{1,3\}}:=u^{(3)}+z^{(3)}$ and sends to P_{1}
P_{4} sets $v_{\{2,3,4\}}:=u^{(4)}+z^{(4)}$ and sends to P_{2} and P_{3}

Tool 1: Passive Multiplication - Araki-style

Recall a PRZS: $z^{(1)}+z^{(2)}+z^{(3)}+z^{(4)}=0$, use it to mask the summands, and treat resulting shares as shares of the output.

$$
\begin{aligned}
P_{1} \text { sets } v_{\{1,4\}} & :=u^{(1)}+z^{(1)} \text { and sends to } P_{4} \\
P_{2} \text { sets } v_{\{1,2\}} & :=u^{(2)}+z^{(2)} \text { and sends to } P_{1} \\
P_{3} \text { sets } v_{\{1,3\}} & :=u^{(3)}+z^{(3)} \text { and sends to } P_{1} \\
P_{4} \text { sets } v_{\{2,3,4\}} & :=u^{(4)}+z^{(4)} \text { and sends to } P_{2} \text { and } P_{3}
\end{aligned}
$$

$$
P_{4}
$$

$$
P_{3}
$$

Tool 1: Passive Multiplication - Araki-style

Recall a PRZS: $z^{(1)}+z^{(2)}+z^{(3)}+z^{(4)}=0$, use it to mask the summands, and treat resulting shares as shares of the output.
P_{1} sets $v_{\{1,4\}}:=u^{(1)}+z^{(1)}$ and sends to P_{4}
P_{2} sets $v_{\{1,2\}}:=u^{(2)}+z^{(2)}$ and sends to P_{1}
P_{3} sets $v_{\{1,3\}}:=u^{(3)}+z^{(3)}$ and sends to P_{1}
P_{4} sets $v_{\{2,3,4\}}:=u^{(4)}+z^{(4)}$ and sends to P_{2} and P_{3}

Tool 1: Passive Multiplication - Araki-style

Recall a PRZS: $z^{(1)}+z^{(2)}+z^{(3)}+z^{(4)}=0$, use it to mask the summands, and treat resulting shares as shares of the output.
P_{1} sets $v_{\{1,4\}}:=u^{(1)}+z^{(1)}$ and sends to P_{4}
P_{2} sets $v_{\{1,2\}}:=u^{(2)}+z^{(2)}$ and sends to P_{1}
P_{3} sets $v_{\{1,3\}}:=u^{(3)}+z^{(3)}$ and sends to P_{1}
P_{4} sets $v_{\{2,3,4\}}:=u^{(4)}+z^{(4)}$ and sends to P_{2} and P_{3}

Tool 1: Passive Multiplication - Araki-style

No further local computation (addition) needed: parties hold $\llbracket v \rrbracket$. Notice

- Not all parties communicate with each other;
- Total number of field elements sent is less than Maurer.

Goal

Goal

Communication-efficient actively-secure MPC arithmetic circuit evaluation for any \mathcal{Q}_{2} access structure.

Arithmetic circuits:

\checkmark Additions: for free

- Multiplications: we will require

Tool 1: Passive multiplication
Tool 2: Efficient opening procedure

Goal

Goal

Communication-efficient actively-secure MPC arithmetic circuit evaluation for any \mathcal{Q}_{2} access structure.

Arithmetic circuits:

\checkmark Additions: for free

- Multiplications: we will require
\checkmark Tool 1: Passive multiplication - Araki-style
Tool 2: Efficient opening procedure

Tool 2: Opening - Maurer-style

Every party broadcasts all of their shares.
Active security: every share is held by at least one honest party.

$$
P_{1}
$$

P_{2}

$$
P_{4}
$$

$$
P_{3}
$$

Tool 2: Opening - Maurer-style

Every party broadcasts all of their shares.

Active security: every share is held by at least one honest party.

Tool 2: Opening - Maurer-style

Every party broadcasts all of their shares.

Active security: every share is held by at least one honest party.

$$
\widetilde{v_{\{2,3,4\}}} \neq v_{\{2,3,4\}}
$$

Tool 2: Opening - Araki-style

Use the assignment of sets to parties:

Party in charge of a share sends to all who do not hold it:

$$
\begin{array}{l|l|}
\hline P_{1} & P_{2} \\
\hline
\end{array}
$$

$$
P_{4}
$$

P_{3}

Tool 2: Opening - Araki-style

Use the assignment of sets to parties:
Party in charge of a share sends to all who do not hold it:

Tool 2: Opening - Araki-style

Use the assignment of sets to parties:
Party in charge of a share sends to all who do not hold it:

Tool 2: Opening - Araki-style

Use the assignment of sets to parties:
Party in charge of a share sends to all who do not hold it:

Tool 2: Opening - Araki-style

Use the assignment of sets to parties:
Party in charge of a share sends to all who do not hold it:

Tool 2: Opening - Araki-style

Use the assignment of sets to parties:
Party in charge of a share sends to all who do not hold it:
Active security: Update hash function locally - all parties' hashes should agree:

$$
\begin{aligned}
& P_{1} \text { computes } h_{1}:=H\left(\ldots, v_{\{1,2\}},, v_{\{1,3\}}, v_{\{1,4\}}, \widetilde{v_{\{2,3,4\}}}, \ldots\right) \\
& P_{2} \text { computes } h_{2}:=H\left(\ldots, v_{\{1,2\}}, \widetilde{v_{\{1,3\}}}, \widetilde{v_{\{1,4\}}}, v_{\{2,3,4\}}, \ldots\right) \\
& P_{3} \text { computes } h_{3}:=H\left(\ldots, \widetilde{v_{\{1,2\}}}, \widetilde{v_{\{1,3\}}}, \widetilde{v_{\{1,4\}}}, v_{\{2,3,4\}}, \ldots\right) \\
& P_{4} \text { computes } h_{4}:=H\left(\ldots, \widetilde{v_{\{1,2\}}}, \widetilde{v_{\{1,3\}}}, v_{\{1,4\}}, v_{\{2,3,4\}}, \ldots\right)
\end{aligned}
$$

Batch-check to save on communication cost.

Goal

Goal

Communication-efficient actively-secure MPC arithmetic circuit evaluation for any \mathcal{Q}_{2} access structure.

Arithmetic circuits:

\checkmark Additions: for free

- Multiplications: we will require
\checkmark Tool 1: Passive multiplication - Araki-style
Tool 2: Efficient opening procedure

Goal

Goal

Communication-efficient actively-secure MPC arithmetic circuit evaluation for any \mathcal{Q}_{2} access structure.

Arithmetic circuits:

\checkmark Additions: for free

- Multiplications: we will require
\checkmark Tool 1: Passive multiplication - Araki-style
\checkmark Tool 2: Efficient opening procedure - using hashing

Goal

Goal

Communication-efficient actively-secure MPC arithmetic circuit evaluation for any \mathcal{Q}_{2} access structure.

Arithmetic circuits:

\checkmark Additions: for free

- Multiplications: we will require
\checkmark Tool 1: Passive multiplication - Araki-style
\checkmark Tool 2: Efficient opening procedure - using hashing
Now to do the actual multiplication...

Outline

Goal

Generalising

MPC Tools

Performing MPC

Pre-processing Model

Offline/Online paradigm using Beaver's circuit randomisation:
Multiply $\llbracket x \rrbracket$ and $\llbracket y \rrbracket$ online given a "triple" $(\llbracket a \rrbracket, \llbracket b \rrbracket$, $\llbracket a b \rrbracket)$ from offline

$$
\llbracket x y \rrbracket=(x+a) \llbracket y \rrbracket+(y+b) \llbracket x \rrbracket+\llbracket a b \rrbracket-(x+a)(y+b) \llbracket 1 \rrbracket
$$

where
$-(x+a)$ and $(y+b)$ are opened secrets (i.e. use Tool 2: Opening on $\llbracket x \rrbracket+\llbracket a \rrbracket$ and $\llbracket y \rrbracket+\llbracket b \rrbracket)$
$-\llbracket 1 \rrbracket$ is any valid sharing of the value 1
\rightsquigarrow Offline phase: generate lots of random triples

Generating Triples: 1. Generate random values

One-time key agreement: parties in each $B \in \mathcal{B}$ agree on a key.
Then for each $B \in \mathcal{B}$, compute $a_{B}:=F_{k_{B}}$ (count) to obtain $\llbracket a \rrbracket$.

$$
\begin{aligned}
a_{\{1,2\}} & :=F_{k_{\{1,2\}}} \text { (count) } \\
a_{\{1,3\}} & :=F_{k_{\{1,3\}}}(\text { count }) \\
a_{\{1,4\}} & :=F_{k_{\{1,4\}}}(\text { count }) \\
a_{\{2,3,4\}} & :=F_{k_{\{2,3,4\}}}(\text { count })
\end{aligned}
$$

All parties increment count and then compute the shares as before: $b_{B}:=F_{k_{B}}($ count $)$; the parties obtain $\llbracket b \rrbracket$.

Generating Triples: 2. Passively multiply

Tool 1: Passive Multiplication
$\llbracket a b \rrbracket:=\llbracket a \downarrow$. $\downarrow b$

Generating Triples: 3 . Sacrifice for active security

Generate two triples,

$$
(\llbracket a \rrbracket, \llbracket b \rrbracket, \llbracket a b \rrbracket) \text { and }\left(\llbracket a^{\prime} \rrbracket, \llbracket b^{\prime} \rrbracket, \llbracket a^{\prime} b^{\prime} \rrbracket\right)
$$

Now use ($\left.\llbracket a^{\prime} \rrbracket, \llbracket b^{\prime} \rrbracket, \llbracket a^{\prime} b^{\prime} \rrbracket\right)$ to check that

$$
\llbracket a \rrbracket \cdot \llbracket b \rrbracket-\llbracket a b \rrbracket=0
$$

Goal

Goal

Communication-efficient actively-secure MPC arithmetic circuit evaluation for any \mathcal{Q}_{2} access structure.

Arithmetic circuits:

\checkmark Additions: for free

- Multiplications: we will require
\checkmark Tool 1: Passive multiplication - Araki-style
\checkmark Tool 2: Efficient opening procedure - using hashing

Goal

Goal

Communication-efficient actively-secure MPC arithmetic circuit evaluation for any \mathcal{Q}_{2} access structure.

Arithmetic circuits:

\checkmark Additions: for free
\checkmark Multiplications: we will require
\checkmark Tool 1: Passive multiplication - Araki-style
\checkmark Tool 2: Efficient opening procedure - using hashing

Costs

Comparison for a threshold access structure:
Tool 1: Passive Multiplication

	Maurer-style	Ours
\# Channels ${ }^{4}$	$n \cdot(n-1)$	$n \cdot(n-t-1)$
\# Field elements	$n \cdot\binom{n}{t}$	$n \cdot(n-t-1)$

Tool 2: Opening

	Maurer-style	Ours
\# Channels	$n \cdot(n-1)$	$\frac{1}{2} \cdot n \cdot(n-1)$
\# Field elements	$n \cdot\binom{n}{t}$	$t \cdot\binom{n}{t}$

[^1]
Implementation

https://github.com/KULeuven-COSIC/SCALE-MAMBA

Thanks!

Questions?

$\left|\Delta^{+}\right|>n ?$

If the number of replicated shares exceeds the number of parties: e.g. $(5,2)$-threshold:

$$
\begin{aligned}
\Delta^{+}:= & \{\{1,2\},\{1,3\},\{1,4\},\{1,5\},\{2,3\} \\
& \{2,4\},\{2,5\},\{3,4\},\{3,5\},\{4,5\}\}
\end{aligned}
$$

gives

$$
\begin{aligned}
\mathcal{B}=\{ & \{1,2,3\},\{1,2,4\},\{1,2,5\},\{1,3,4\},\{1,3,5\}, \\
& \{1,4,5\},\{2,3,4\},\{2,3,5\},\{2,4,5\},\{3,4,5\}\}
\end{aligned}
$$

Assignment as before: e.g.

$$
\begin{array}{ll}
\mathcal{B}_{1}:=\{\{1,2,3\},\{1,2,4\}\} & \mathcal{B}_{4}:=\{\{1,4,5\},\{2,4,5\}\} \\
\mathcal{B}_{2}:=\{\{2,3,4\},\{2,3,5\}\} & \mathcal{B}_{5}:=\{\{1,2,5\},\{1,3,5\}\} \\
\mathcal{B}_{3}:=\{\{3,4,5\},\{1,3,4\}\} &
\end{array}
$$

Optimisation using pre-shared keys

[^0]: ${ }^{3}$ Usually more sets than parties

[^1]: ${ }^{4}$ Uni-directional

