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Multi-Party Computation (Computation with Privacy)
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Applications of Multi-Party Computation
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Function Computation

Data Sharing



Our Contributions

New Comparison Protocols
- New protocols exploiting commutativity of addition
- General n-party protocols
- Arithmetic black box
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Elimination of Slack
- No gap between the bit-length of the input and the MPC representation
- Enables computation over smaller datatypes

Simplicity and Efficiency
- Extremely simple to implement
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Standing on the shoulder of giants?

● Prior art [edaBits]: Extended, Doubly-Authenticated Bits
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[edaBits] Escudero et al. "Improved primitives for MPC over mixed arithmetic-binary circuits." Annual International Cryptology Conference, 2020.
[daBits]   Rotaru et al. “Marbled Circuits: Mixing Arithmetic and Boolean Circuits with Active Security.” International Conference on Cryptology in India, 2019.

● More effective generation than using       - daBits  (improving upon [daBits])

daBit, edaBit → Critical for share conversions
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The Rabbit Collection 
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The Rabbit Collection 
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The Rabbit Collection 

10



Rabbit Intuition: Observation 1 

• Detect when a sum over a particular modulus wraps around and 
correct for it. 

• Given a function:

• We can compute a modular sum by performing computations over 
the integers!   
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• Combine with Observation 1:  

Rabbit Intuition: Observation 2 

• Exploit the commutativity of addition: 
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Rabbit LTC Pseudocode 
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The Rabbit Collection 
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What is a negative number?
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What is a negative number?
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1 1 00

1 0 11



What is a negative number?
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1 1 00

1 0 11



LTS is different to LTC - common approaches
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LTS is different to LTC - common approaches
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LTC - our approach
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...

No need for bounding the inputs and faster than previous constructions



Setup
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● Intel(R) Core(TM) i9-9900 CPU @ 3.10GHz
● 128GB of RAM over a 10Gb/s network switch with an average RTT time of 1ms.

Dishonest majority

Honest majority



Setup
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● Intel(R) Core(TM) i9-9900 CPU @ 3.10GHz
● 128GB of RAM over a 10Gb/s network switch with an average RTT time of 1ms.

Dishonest majority

Honest majority



Experiments
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Experiments
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Experiments
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Experiments
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Experiments

29



Experiments
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Experiments
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Experiments

32



Experiments
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For the HE case we noticed that Rabbit has a lower footprint memory due to smaller ciphertexts



Conclusions
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● We show that removing the slack can lead to more efficient protocols.
● To get enough statistical security we still need the underlying prime to be smooth. Would 

be cool to remove this constraint although this was not needed in our applications.



Thank you!
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Backup Slides
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LTS is different to LTC - common approaches
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To compare [x] > [y], assume x and y are k-bit long, compute [x] - [y] and then truncate the 
output by 2^{k+1} to extract the MSB.

Same approach to compare [x] < C.

Caveat: Most efficient protocols required inputs to be bounded to avoid wraparound of [x] - [y].

We can do better*:
1) reduce the cost of [x] < C
2) eliminate need of slack when comparing [x], [y] or just [x] < C.

** Works with rings or smooth primes (p \approx 2^k) due to edabit form.

For the case of generic secret sharing:
● Probabilistic truncation (MP-SPDZ, SCALE, etc) - relatively fast.
● Deterministic truncation - largest improvement Previous protocols for LTC comparisons 

using generic secret sharing assumed an input bound.



Brief intro
- MPC what is it → Applications
- What do all these have in common. Comparison. → Overhead is prohibitive?
- Any security model but most improvement in DH
- Our contrib

- Slack
- Overhead/dishonest majority/rings and fields?

- Share conversions are important. edaBits

Technical protocols
- Deeper intuition (wrap around) and intuition figure
- Figure for dependence

Discussion section of our protocols
- Slack
- LTS is not the same as LTC
- Experiments

- Set-up
- Throughput experiments
- LAN/WAN
- Summary?

38



Functional Dependence of Rabbit
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Just wanted to add this animation quick since I feel that I pushed you guys onto Google Slides. 

You can tweak each element to an appropriate size and similarly make the other equations. 

Also, in case you forgot, the addon is called Math Equations. I’ve suppressed slide numbers for now but I think I 
should be able to fit my stuff in 6 slides (6th is rabbit transition, so you can start at 7).
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• Exploit the commutativity of addition: 

• Combine with Observation 1:  

Rabbit Intuition: Observation 2 
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Rabbit LTC Pseudocode 
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