
Rabbit: Efficient Comparison for
Secure Multi-Party Computation

March 1st, 2021
Financial Cryptography and Data Security

Eleftheria Makri1,5, Dragos Rotaru2,1, Frederik Vercauteren1, and Sameer Wagh3,4

1imec-COSIC, KU Leuven, Belgium
2Cape Privacy, Remote

3University of California, Berkeley, USA
4Princeton University, Princeton, USA

5ABRR, Saxion University of Applied Sciences, The Netherlands
emakri@esat.kuleuven.be, dragos@capeprivacy.com,

frederik.vercauteren@kuleuven.be, swagh@berkeley.edu
1

mailto:Netherlandsemakri@esat.kuleuven.be
mailto:Netherlandsemakri@esat.kuleuven.be
mailto:dragos@capeprivacy.com

Multi-Party Computation (Computation with Privacy)

2

Applications of Multi-Party Computation

3

Function Computation

Data Sharing

Our Contributions

New Comparison Protocols
- New protocols exploiting commutativity of addition
- General n-party protocols
- Arithmetic black box

4

Elimination of Slack
- No gap between the bit-length of the input and the MPC representation
- Enables computation over smaller datatypes

Simplicity and Efficiency
- Extremely simple to implement

1

2

3

Standing on the shoulder of giants?

● Prior art [edaBits]: Extended, Doubly-Authenticated Bits

5
[edaBits] Escudero et al. "Improved primitives for MPC over mixed arithmetic-binary circuits." Annual International Cryptology Conference, 2020.
[daBits] Rotaru et al. “Marbled Circuits: Mixing Arithmetic and Boolean Circuits with Active Security.” International Conference on Cryptology in India, 2019.

● More effective generation than using - daBits (improving upon [daBits])

daBit, edaBit → Critical for share conversions

6

7

The Rabbit Collection

8

The Rabbit Collection

9

The Rabbit Collection

10

Rabbit Intuition: Observation 1

• Detect when a sum over a particular modulus wraps around and
correct for it.

• Given a function:

• We can compute a modular sum by performing computations over
the integers!

11

• Combine with Observation 1:

Rabbit Intuition: Observation 2

• Exploit the commutativity of addition:

12

Rabbit LTC Pseudocode

13

The Rabbit Collection

14

15

16

What is a negative number?

17

What is a negative number?

18

1 1 00

1 0 11

What is a negative number?

19

1 1 00

1 0 11

LTS is different to LTC - common approaches

20

...

...

... ...

LTS is different to LTC - common approaches

21

... ...

LTC - our approach

22

...

No need for bounding the inputs and faster than previous constructions

Setup

23

● Intel(R) Core(TM) i9-9900 CPU @ 3.10GHz
● 128GB of RAM over a 10Gb/s network switch with an average RTT time of 1ms.

Dishonest majority

Honest majority

Setup

24

● Intel(R) Core(TM) i9-9900 CPU @ 3.10GHz
● 128GB of RAM over a 10Gb/s network switch with an average RTT time of 1ms.

Dishonest majority

Honest majority

Experiments

25

Experiments

26

Experiments

27

Experiments

28

Experiments

29

Experiments

30

Experiments

31

Experiments

32

Experiments

33

For the HE case we noticed that Rabbit has a lower footprint memory due to smaller ciphertexts

Conclusions

34

● We show that removing the slack can lead to more efficient protocols.
● To get enough statistical security we still need the underlying prime to be smooth. Would

be cool to remove this constraint although this was not needed in our applications.

Thank you!

35

Backup Slides

36

LTS is different to LTC - common approaches

37

To compare [x] > [y], assume x and y are k-bit long, compute [x] - [y] and then truncate the
output by 2^{k+1} to extract the MSB.

Same approach to compare [x] < C.

Caveat: Most efficient protocols required inputs to be bounded to avoid wraparound of [x] - [y].

We can do better*:
1) reduce the cost of [x] < C
2) eliminate need of slack when comparing [x], [y] or just [x] < C.

** Works with rings or smooth primes (p \approx 2^k) due to edabit form.

For the case of generic secret sharing:
● Probabilistic truncation (MP-SPDZ, SCALE, etc) - relatively fast.
● Deterministic truncation - largest improvement Previous protocols for LTC comparisons

using generic secret sharing assumed an input bound.

Brief intro
- MPC what is it → Applications
- What do all these have in common. Comparison. → Overhead is prohibitive?
- Any security model but most improvement in DH
- Our contrib

- Slack
- Overhead/dishonest majority/rings and fields?

- Share conversions are important. edaBits

Technical protocols
- Deeper intuition (wrap around) and intuition figure
- Figure for dependence

Discussion section of our protocols
- Slack
- LTS is not the same as LTC
- Experiments

- Set-up
- Throughput experiments
- LAN/WAN
- Summary?

38

Functional Dependence of Rabbit

39

Just wanted to add this animation quick since I feel that I pushed you guys onto Google Slides.

You can tweak each element to an appropriate size and similarly make the other equations.

Also, in case you forgot, the addon is called Math Equations. I’ve suppressed slide numbers for now but I think I
should be able to fit my stuff in 6 slides (6th is rabbit transition, so you can start at 7).

40

• Exploit the commutativity of addition:

• Combine with Observation 1:

Rabbit Intuition: Observation 2

41

Rabbit LTC Pseudocode

42

