Feistel Structures for MPC, and More

Arnab Roy¹

(joint work with Martin Albrecht², Lorenzo Grassi³, Léo Perrin⁴, Sebastian Ramacher³, Christian Rechberger³, Dragos Rotaru^{1,5} and Markus Schofnegger³)

University of Bristol, Bristol, UK¹

Royal Holloway, University of London²

TU Graz, Austria³

Inria, Paris, France⁴

KU Leuven, Belgium⁵

Motivation and background

- $\bullet\,$ In recent years significant progress in the areas of MPC, FHE, ZK
- Communication protocol (Theory \rightarrow Practice)
- Many new applications are being developed
- Examples include
 - 1. Private set intersection, privacy preserving search
 - 2. Statistical computation on sensitive data
 - 3. Verifiable computation
 - 4. Cloud computation

- The role of symmetric-key primitives Hash function, PRF, PRP
- Specific requirements from the protocols
- Examples of typical conditions
 - Low number of multiplications (over integers): MPC, ZK
 - Low number of AND: MPC
 - Low multiplicative depth: FHE, MPC
- Designs must be secure

• Aren't there secure symmetric-key designs (AES, SHA2, SHA3, Blake, ...) ?

- Aren't there secure symmetric-key designs (AES, SHA2, SHA3, Blake, ...) ?
- Yes, but they are not enough

- Aren't there secure symmetric-key designs (AES, SHA2, SHA3, Blake, ...) ?
- Yes, but they are not enough
- Example:
 - SHA2 **optimized**: \approx 25000 AND gates (per compression function)
 - AES is not efficient for MPC

- Aren't there secure symmetric-key designs (AES, SHA2, SHA3, Blake, ...) ?
- Yes, but they are not enough
- Example:
 - SHA2 optimized: \approx 25000 AND gates (per compression function)
 - AES is not efficient for MPC
- Uses many XOR: non-linear after embedding into \mathbb{F}_p

New design endeavours

- New type of symmetric-key designs
- New design challenges: Minimize
 - AND depth and/or No. of ANDs (per bit)
 - multiplicative complexity and/or depth (per bit)
- Can we design primitives which minimize one or more of these metrics?
- Example
 - MiMC, Feistel-MiMC [ZKP, MPC friendly]
 - Flip, Rasta [FHE friendly]
 - LowMC, Legendre PRF [MPC friendly]
 - GMiMC [ZKP, MPC friendly]
 - More recent designs
- Present new cryptanalysis challenges

ZKP friendly

- Finite field (large) friendly hash
- Different from the designs optimized for x86 (binary rings)
 - operations over \mathbb{Z}_2 or \mathbb{F}_2 makes them very slow for ZK system
 - Can not use BLAKE2b, SHA2, SHA3
- First new designs: MiMC, Feistel-MiMC
- Recent designs
 - GMiMC (SNARK friendly)
 - Poseidon(SNARK friendly), Starkad (STARK friendly)
 - Vision(STARK friendly), Rescue (SNARK friendly)

MiMCHash

• We work over a field ${\mathbb F}$

Figure 1: MiMC

Figure 2: Feistel-MiMC

- Simple design idea:
 - 1. Add (round) key
 - 2. Add round constant
 - 3. Repeat
- Uses Sponge mode
- Problem: expanding to > 512-bit = 2 elements in 𝔽, for 128 bit security

- f is a bijection
- c = 256; One \mathbb{F} element

GMiMC: Extension of MiMC

• Uses Generalized Unbalanced Feistel with

Figure 3: Contracting round function

Figure 4: Expanding round function

- Round function $F_i(x_2, \ldots, x_t, k_i) = (\sum x_j + rc_i + k_i)^3$ for CRF
- Round function $F_i(x, k_i) = (x + rc_i + k_i)^3$ for ERF

•
$$k_i = k$$
 $k_i = (i+1)k$

• No. of branches $t << \log_2(|\mathbb{F}|)$

- Uses the sponge mode with capacity c = 256;
- No. of branches t > 2
- Security Goal: 128-bit security

- Use of APN function $(x \rightarrow x^3)$ protects against differential and other statistical attacks
- Security relies mostly on algebraic cryptanalysis
 - Interpolation, GCD, Groebner basis
 - Interpolation analysis (with root finding) for Hash function
- Mostly exploiting the degree of the output polynomial
- No weakness found in the GMiMCHash beyond birthday bound (to the best of our knowledge)

Performance and application

- In **SNARK**: GMiMCHash is faster ($\approx 1.2x$) than MiMC/Fesitel-MiMCHash
- Main advantage is the expansion
- Application examples: ZCash (ZKSNARK), Smart contract, STARK application etc.
- StarkWare Hash challenge (https://starkware.co/hash-challenge/)
 - GMiMCHash, Feistel-MiMCHash
 - Poseidon and Starkad (SNARK and STARK friendly resp.)
 - Vision and Rescue (STARK and SNARK friendly resp.)

MPC Friendly

MPC friendly encryption

- Ciphers optimized for x86 are not suitable for MPC
- Security aim: Secure block cipher
- First new design: LowMC (over \mathbb{F}_2)
- Other: Legendre PRF (over integers)
- Legendre PRF is secure only upto birthday bound
- In **SPDZ**: MiMC turned out to be efficient in mode of operation (e.g. Authenticated Encryption) (!!)
- What about GMiMC?

- Securty Goal: At least 128-bit key security
- Efficiency in MPC: preprocessing + online computation
- + ${\rm GMiMC}_{erf}$ and ${\rm GMiMC}_{crf}$ have very fast preprocessing phase
- Reason: Least no. of multiplications per (encryption) round
- Avoids linear scaling with increased blocks (only known case)
- Example: GMiMC_{erf} is 5.5x faster than MiMC (with 16 blocks)
- Gain in throughput

Yet another application

- A new application
- **Picnic**: Uses ZKB++; ZKP-based signature scheme
- Minimize: No. of multiplications $\times \log_2(|\mathbb{F}|)$
- Current best option: LowMC
- Can we use GMiMC?

GMiMC in Picnic

- Pushing the MiMC design strategy for small field
- Security Goal: 256-bit key security with 256-bit input

Scheme	(n, t, R)	Sign	Verify	View size
MiMC	(256, 1, 162) (272, 1, 172)	333.97 ms 92.45 ms		83456 bits 94112 bits
$\operatorname{GMiMC}_{erf} over \ \mathbb{F}_{2^n}$	(33, 8, 56)	3.34 ms	2.29 ms	1848 bits
LowMC-(256, 10, 38)	-	3.74 ms	3.52 ms	1140 bits
LowMC-(256, 1, 363)	-	9.55 ms	7.12 ms	1089 bits

• GMiMC is comparable to LowMC

Conclusion and open questions

- Finite field friendly designs
- Design space exploration
- Open questions in design and analysis
 - Cryptanalysis methods over \mathbb{F}_p (completely unknown)
 - New design principle?
 - Bounds on multiplicative complexity
 - How far can we extend current cryptanalysis techniques?
 - Can we obtain generic (algebraic) complexity results for security?

Updates on MiMC, GMiMC and similar designs on https://byt3bit.github.io/primesym/ (new, still under construction)

Thank you!