
MPC-Friendly Symmetric Key Primitives

Lorenzo Grassi 1 Christian Rechberger 1 Dragoş Rotaru 2

Peter Scholl 2 Nigel P. Smart 2

1Graz University of Technology

2University of Bristol

October 25, 2016

What is Multiparty Computation?

What is Multiparty Computation?

Interesting problems

Linear Programming

Interesting problems

Linear Programming

Integer Comparison

Interesting problems

Linear Programming

Integer Comparison Fixed Point Arithmetic

Interesting problems

Linear Programming

Integer Comparison Fixed Point Arithmetic

Interesting problems

Easy to implement via
arithmetic circuits mod p

There is a problem.

There is a problem.

There is a problem.

There is a problem.

There is a problem.

There is a problem.

There is a problem.

There is a problem.

There is a problem.

Take home message

Move data securely between
clients and MPC engines.

Need a PRF mod p

I Enc / Dec in CTR mode use only PRF calls.

I Avoid the n fold database/key blowup by secret share the key
and use a PRF mod p in MPC!

I Why mod p? Conversion between binary and arithmetic
shares is expensive.

Other use cases for PRF’s in MPC

I Secure database joins [LTW13].

I Oblivious RAM [LO13].

I Searchable symmetric encryption, order-revealing encryption
[BCO’N11, BLRSZZ15, CLWW16, BBO’N07, CJJKRS13].

What we have done

Benchmark and create new protocols using PRF’s within SPDZ
protocol.

Why SPDZ?

I MPC protocol with active security.

I 200 times faster pre-processing phase [KOS16].

I It is open source!
https://github.com/bristolcrypto/SPDZ-2.

https://github.com/bristolcrypto/SPDZ-2

MPC with secret sharing 101

I Each party Pi has [a]← ai
s.t. a =

∑n
i=1 ai .

I Triples generation:
[a] = [b] · [c]

I Random bits and squares:
[b], [s2].

Preprocessing Phase

MPC with secret sharing 101

I Use 1 triple for each
multiplication gate.

I Number of communcation
rounds is given by the
multiplicative depth.

Online Phase

Circuit Evaluation in SPDZ

Circuit Evaluation in SPDZ

Circuit Evaluation in SPDZ

Circuit Evaluation in SPDZ

Circuit Evaluation in SPDZ

3 triples; 2 rounds.

What PRF’s have we looked at?

I AES [DR01].

I LowMC (Low Multiplicative Complexity) [ARS+15].

I Naor-Reingold PRF [NR04].

I MiMC (Minimum Multiplicative Complexity) [AGR+16].

I Legendre PRF [Dam88].

What PRF’s have we looked at?

I AES [DR01].

I LowMC (Low Multiplicative Complexity) [ARS+15].

I Naor-Reingold PRF [NR04].

I MiMC (Minimum Multiplicative Complexity) [AGR+16].

I Legendre PRF [Dam88].

Let’s play a game

Let’s play a game

AES - de-facto benchmark

I 960 multiplications

I 50 rounds

I Operations done in F240 .

PRF on blocks

AES - de-facto benchmark

I 960 multiplications

I 50 rounds

I Operations done in F240 .

PRF on blocks 5 blocks/s

AES - de-facto benchmark

I 960 multiplications

I 50 rounds

I Operations done in F240 .

PRF on blocks
8ms latency

AES - de-facto benchmark

I 960 multiplications

I 50 rounds

I Operations done in F240 .

PRF on blocks

530 blocks/s throughput

AES - de-facto benchmark

I Compare the PRF’s mod p with AES only for benchmarking
purposes.

I In real world we want to keep all data in Fp.

Naor-Reingold PRF

FNR(n)(k, x) = gk0·
∏n

i=1 k
xi
i

where k = (k0, . . . , kn) ∈ Fn+1
p is the key.

Naor-Reingold PRF

FNR(n)(k, x) = gk0·
∏n

i=1 k
xi
i

where k = (k0, . . . , kn) ∈ Fn+1
p is the key.

Fortunately, in some applications the output must be public!

Naor-Reingold PRF

I Active security version for
public output.

I Why EC? Smaller modulus.

I 2 · n multiplications.

I 3 + log n + 1 rounds.

EC based PRF

Naor-Reingold PRF

I Active security version for
public output.

I Why EC? Smaller modulus.

I 4n + 2 multiplications.

I 7 rounds [BB89, CH10].

EC based PRF in constant round

Naor-Reingold PRF

I Active security version for
public output.

I Why EC? Smaller modulus.

I 4n + 2 multiplications.

I 7 rounds [BB89, CH10].

EC based PRF in constant round

5 evals/s

Naor-Reingold PRF

I Active security version for
public output.

I Why EC? Smaller modulus.

I 4n + 2 multiplications.

I 7 rounds [BB89, CH10].

EC based PRF in constant round 4.3ms latency

Naor-Reingold PRF

I Active security version for
public output.

I Why EC? Smaller modulus.

I 4n + 2 multiplications.

I 7 rounds [BB89, CH10].

EC based PRF in constant round

370 blocks/s throughput

Naor-Reingold PRF

I Active security version for
public output.

I Why EC? Smaller modulus.

I 4n + 2 multiplications.

I 7 rounds [BB89, CH10].

EC based PRF in constant round

Results have shown that over
70% of the time was spent on EC

computations.
Computation is the bottleneck,

not communication!

MiMC - How does it work?

[AGR+16]

MiMC PRF

I 146 multiplications

I 73 rounds

I 1 variant optimized for
latency, other for
throughput.

MiMC PRF - works in both worlds

MiMC PRF

I 146 multiplications

I 73 rounds

I 1 variant optimized for
latency, other for
throughput.

MiMC PRF - works in both worlds
34 blocks/s

MiMC PRF

I 146 multiplications

I 73 rounds

I 1 variant optimized for
latency, other for
throughput.

MiMC PRF - works in both worlds

6ms latency

MiMC PRF

I 146 multiplications

I 73 rounds

I 1 variant optimized for
latency, other for
throughput.

MiMC PRF - works in both worlds

9000 blocks/s throughput - 16x AES

Legendre PRF

In 1988, Damg̊ard conjectured that this sequence is
pseuodarandom starting from a random seed k.

(
k

p

)
,

(
k + 1

p

)
,

(
k + 2

p

)
, . . .

Legendre PRF - 1 bit output

I log p multiplications.

I log p rounds.

Legendre PRF - old version

Legendre PRF - 1 bit output

I log p 2 multiplications.

I log p 3 rounds.

Legendre PRF - new version

Legendre PRF - 1 bit output

I log p 2 multiplications.

I log p 3 rounds.

Legendre PRF - new version 1225 evals/s - 250x AES

Legendre PRF - 1 bit output

I log p 2 multiplications.

I log p 3 rounds.

Legendre PRF - new version 0.3ms latency - 25x faster AES

Legendre PRF - 1 bit output

I log p 2 multiplications.

I log p 3 rounds.

Legendre PRF - new version

202969 blocks/s throughput - 380x
AES

How does it work?

Protocol ΠLegendre

Let α be a fixed, quadratic non-residue modulo p, i.e.
(
α
p

)
= −1.

Eval: To evaluate FLeg(bit) on input [x] with key [k]:

1. Take a random square [s2] and a random bit [b]
2. [t]← [s2] · ([b] + α · (1− [b]))
3. u ← Open([t] · ([k] + [x]))
4. Output [y]←

(
u
p

)
· (2[b]− 1)

Securely computing the FLeg(bit) PRF with shared output

How does it work?

Protocol ΠLegendre

Let α be a fixed, quadratic non-residue modulo p, i.e.
(
α
p

)
= −1.

Eval: To evaluate FLeg(bit) on input [x] with key [k]:

1. Take a random square [s2] and a random bit [b]

2. [t]← [s2] · ([1] + α · (1− [1]))

3. u ← Open([s2] · ([k] + [x]))

4. Output [y]←
(
u
p

)
· (2 [1] − 1)

Securely computing the FLeg(bit) PRF with shared output

How does it work?

Protocol ΠLegendre

Let α be a fixed, quadratic non-residue modulo p, i.e.
(
α
p

)
= −1.

Eval: To evaluate FLeg(bit) on input [x] with key [k]:

1. Take a random square [s2] and a random bit [b]

2. [t]← [s2] · ([0] + α · (1− [0]))

3. u ← Open([s2α] · ([k] + [x]))

4. Output [y]←
(
u
p

)
· (2 [0] − 1)

Securely computing the FLeg(bit) PRF with shared output

Security of Legendre PRF

Is it secure?

Security of Legendre PRF

Is it secure?

Yes, we give a reduction to the SLS problem: Given
(
k+x
p

)
,

find x.

Summary

I We have efficiently solved the problem of sending data
between MPC engines.

I PRF’s mod p in MPC are fast! Can you find other
applications built on top of these?

I For proofs, WAN timings, other details, check out our paper!

Thank you!

