MPC-Friendly Symmetric Key Primitives

Lorenzo Grassi ${ }^{1}$ Christian Rechberger ${ }^{1}$ Dragoș Rotaru ${ }^{2}$ Peter Scholl ${ }^{2}$ Nigel P. Smart ${ }^{2}$
${ }^{1}$ Graz University of Technology
${ }^{2}$ University of Bristol
October 25, 2016

What is Multiparty Computation?

What is Multiparty Computation?

Interesting problems

Interesting problems

Linear Programming

Integer Comparison

Interesting problems

Linear Programming

Fixed Point Arithmetic

Interesting problems

Linear Programming

Integer Comparison

Fixed Point Arithmetic

Interesting problems

Easy to implement via arithmetic circuits mod p

There is a problem.

There is a problem.

There is a problem.

There is a problem.

42

There is a problem.

There is a problem.

$$
i+\frac{0}{8+8}=8
$$

There is a problem.

There is a problem.

There is a problem.

Take home message

Move data securely between clients and MPC engines.

Need a PRF mod p

- Enc / Dec in CTR mode use only PRF calls.
- Avoid the n fold database/key blowup by secret share the key and use a PRF $\bmod p$ in MPC!
- Why mod p ? Conversion between binary and arithmetic shares is expensive.

Other use cases for PRF's in MPC

- Secure database joins [LTW13].
- Oblivious RAM [LO13].
- Searchable symmetric encryption, order-revealing encryption [BCO'N11, BLRSZZ15, CLWW16, BBO'N07, CJJKRS13].

What we have done

Benchmark and create new protocols using PRF's within SPDZ protocol.

Why SPDZ?

- MPC protocol with active security.
- 200 times faster pre-processing phase [KOS16].
- It is open source! https://github.com/bristolcrypto/SPDZ-2.

MPC with secret sharing 101

- Each party P_{i} has $[a] \leftarrow a_{i}$ s.t. $a=\sum_{i=1}^{n} a_{i}$.
- Triples generation:
$[a]=[b] \cdot[c]$
- Random bits and squares: [b], $\left[s^{2}\right]$.

Preprocessing Phase

MPC with secret sharing 101

- Use 1 triple for each multiplication gate.
- Number of communcation rounds is given by the multiplicative depth.

Online Phase

Circuit Evaluation in SPDZ

X

Z

Circuit Evaluation in SPDZ

3 triples; 2 rounds.

What PRF's have we looked at?

- AES [DR01].
- LowMC (Low Multiplicative Complexity) [ARS ${ }^{+}$15].
- Naor-Reingold PRF [NR04].
- MiMC (Minimum Multiplicative Complexity) [AGR+16].
- Legendre PRF [Dam88].

What PRF's have we looked at?

- AES [DR01].
- LowMC (Low Multiplicative Complexity) [ARS+15].
- Naor-Reingold PRF [NR04].
- MiMC (Minimum Multiplicative Complexity) [AGR+16].
- Legendre PRF [Dam88].

Let's play a game

[^0]Let's play a game

AES - de-facto benchmark

- 960 multiplications
- 50 rounds
- Operations done in $\mathbb{F}_{2^{40}}$.

PRF on blocks

AES - de-facto benchmark

- 960 multiplications
- 50 rounds
- Operations done in $\mathbb{F}_{2^{40}}$.

PRF on blocks

5 blocks/s

AES - de-facto benchmark

- 960 multiplications
- 50 rounds
- Operations done in $\mathbb{F}_{2^{40}}$.

PRF on blocks

8ms latency

AES - de-facto benchmark

- 960 multiplications
- 50 rounds
- Operations done in $\mathbb{F}_{2^{40}}$.

530 blocks/s throughput

AES - de-facto benchmark

- Compare the PRF's mod p with AES only for benchmarking purposes.
- In real world we want to keep all data in \mathbb{F}_{p}.

Naor-Reingold PRF

$$
F_{N R(n)}(\mathbf{k}, \mathbf{x})=g^{k_{0} \cdot \prod_{i=1}^{n} k_{i}^{k_{i}}}
$$

where $\mathbf{k}=\left(k_{0}, \ldots, k_{n}\right) \in \mathbb{F}_{p}^{n+1}$ is the key.

Naor-Reingold PRF

$$
F_{\mathrm{NR}(n)}(\mathbf{k}, \mathbf{x})=g^{k_{0} \cdot \prod_{i=1}^{n} k_{i}^{x_{i}}}
$$

where $\mathbf{k}=\left(k_{0}, \ldots, k_{n}\right) \in \mathbb{F}_{p}^{n+1}$ is the key.
Fortunately, in some applications the output must be public!

Naor-Reingold PRF

- Active security version for public output.
- Why EC? Smaller modulus.
- $2 \cdot n$ multiplications.
- $3+\log n+1$ rounds.

EC based PRF

Naor-Reingold PRF

- Active security version for public output.
- Why EC? Smaller modulus.
- $4 n+2$ multiplications.
- 7 rounds [BB89, CH10].

EC based PRF in constant round

Naor-Reingold PRF

- Active security version for public output.
- Why EC? Smaller modulus.
- $4 n+2$ multiplications.
- 7 rounds [BB89, CH10].

5 evals/s
EC based PRF in constant round

Naor-Reingold PRF

- Active security version for public output.
- Why EC? Smaller modulus.
- $4 n+2$ multiplications.
- 7 rounds [BB89, CH10].

EC based PRF in constant round

Naor-Reingold PRF

- Active security version for public output.
- Why EC? Smaller modulus.
- $4 n+2$ multiplications.
- 7 rounds [BB89, CH10].

370 blocks/s throughput

EC based PRF in constant round

Naor-Reingold PRF

- Active security version for public output.
- Why EC? Smaller modulus.
- $4 n+2$ multiplications.
- 7 rounds [BB89, CH10].

> Results have shown that over 70% of the time was spent on EC computations.
> Computation is the bottleneck, not communication!

EC based PRF in constant round

MiMC - How does it work?

Fig. 1: r rounds of MiMC- n / n
[AGR ${ }^{+} 16$]

MiMC PRF

- 146 multiplications
- 73 rounds
- 1 variant optimized for latency, other for throughput.

MiMC PRF - works in both worlds

MiMC PRF

- 146 multiplications
- 73 rounds
- 1 variant optimized for latency, other for throughput.

34 blocks/s
MiMC PRF - works in both worlds

MiMC PRF

- 146 multiplications
- 73 rounds
- 1 variant optimized for latency, other for throughput.

6 ms latency

MiMC PRF

- 146 multiplications
- 73 rounds
- 1 variant optimized for latency, other for throughput.

9000 blocks/s throughput - 16x AES

Legendre PRF

In 1988, Damgård conjectured that this sequence is pseuodarandom starting from a random seed k.

$$
\left(\frac{k}{p}\right),\left(\frac{k+1}{p}\right),\left(\frac{k+2}{p}\right), \ldots
$$

Legendre PRF - 1 bit output

- $\log p$ multiplications.
- $\log p$ rounds.

Legendre PRF - old version

Legendre PRF - 1 bit output

- $\log 2$ multiplications.
- $\log p 3$ rounds.

Legendre PRF - new version

Legendre PRF - 1 bit output

- $\log p 2$ multiplications.
- $\log 3$ rounds.

Legendre PRF - new version

1225 evals/s - 250x AES

Legendre PRF - 1 bit output

- $\operatorname{tog} p 2$ multiplications.
- $\log p 3$ rounds.

Legendre PRF - new version

0.3 ms latency - 25x faster AES

Legendre PRF - 1 bit output

- $\log 2$ multiplications.
- $\log p 3$ rounds.

Legendre PRF - new version

202969 blocks/s throughput - 380x AES

How does it work?

Protocol $\Pi_{\text {Legendre }}$

Let α be a fixed, quadratic non-residue modulo p, i.e. $\left(\frac{\alpha}{p}\right)=-1$.
Eval: To evaluate $F_{\text {Leg(bit) }}$ on input $[x]$ with key $[k]$:

1. Take a random square $\left[s^{2}\right]$ and a random bit $[b]$
2. $[t] \leftarrow\left[s^{2}\right] \cdot([b]+\alpha \cdot(1-[b]))$
3. $u \leftarrow \operatorname{Open}([t] \cdot([k]+[x]))$
4. Output $[y] \leftarrow\left(\frac{u}{p}\right) \cdot(2[b]-1)$

Securely computing the $F_{\text {Leg(bit) }}$ PRF with shared output

How does it work?

Protocol $\Pi_{\text {Legendre }}$

Let α be a fixed, quadratic non-residue modulo p, i.e. $\left(\frac{\alpha}{p}\right)=-1$.
Eval: To evaluate $F_{\text {Leg(bit) }}$ on input $[x]$ with key $[k]$:

1. Take a random square $\left[s^{2}\right]$ and a random bit $[b]$
2. $[t] \leftarrow\left[s^{2}\right] \cdot([1]+\alpha \cdot(1-[1]))$
3. $u \leftarrow \operatorname{Open}\left(\left[s^{2}\right] \cdot([k]+[x])\right)$
4. Output $[y] \leftarrow\left(\frac{u}{p}\right) \cdot(2[1]-1)$

Securely computing the $F_{\text {Leg(bit) }}$ PRF with shared output

How does it work?

Protocol $\Pi_{\text {Legendre }}$

Let α be a fixed, quadratic non-residue modulo p, i.e. $\left(\frac{\alpha}{p}\right)=-1$.
Eval: To evaluate $F_{\text {Leg(bit) }}$ on input $[x]$ with key $[k]$:

1. Take a random square $\left[s^{2}\right]$ and a random bit $[b]$
2. $[t] \leftarrow\left[s^{2}\right] \cdot([0]+\alpha \cdot(1-[0]))$
3. $u \leftarrow \operatorname{Open}\left(\left[s^{2} \alpha\right] \cdot([k]+[x])\right)$
4. Output $[y] \leftarrow\left(\frac{u}{p}\right) \cdot(2[0]-1)$

Securely computing the $F_{\text {Leg(bit) }}$ PRF with shared output

Security of Legendre PRF

Is it secure?

Security of Legendre PRF

Is it secure?

Yes, we give a reduction to the SLS problem: Given $\left(\frac{k+x}{p}\right)$, find x.

Summary

- We have efficiently solved the problem of sending data between MPC engines.
- PRF's mod p in MPC are fast! Can you find other applications built on top of these?
- For proofs, WAN timings, other details, check out our paper!

Thank you!

[^0]:

