## Faster Secure Multi-Party Computation of AES and DES Using Lookup Tables

Marcel Keller, Emmanuela Orsini, **Dragos Rotaru**, Peter Scholl, Eduardo Soria-Vazquez, and Srinivas Vivek

ACNS 2017



#### Multi-Party Computation



#### Multi-Party Computation





#### Bob has problems.







#### Look-up tables are everywhere in MPC.



## Oblivious RAM



Non-linear functions



#### Look-up tables are everywhere in MPC.



## Oblivious RAM



Non-linear functions

#### Non-linear? AES and 3-DES





#### Non-linear? AES and 3-DES





#### Non-linear? AES and 3-DES





# Fastest AES and 3-DES in MPC with malicious security

- Apply side-channel countermeasures in the MPC land.
- Improve on previous AES TinyTable by at least 50 times.
- 3-DES has now 100 times faster online time.



#### Concurrent Work

- [DNNR16] TinyTable. Improved version now at CRYPTO17.
- [DKS+17] Dessouky et al. in NDSS17. Semi-Honest setting based on 1-out-of-N OT. Also built a compiler which can be used with our protocol.









## Generate Triples. [c] = [a][b]





## Generate Triples. [c] = [a][b]















#### MPC Online Phase



## Use Triples.



#### MPC Online Phase





























#### 3 triples. 2 rounds.

#### Side-Channel inspired



- Write Sbox(x) as a poly with minimal non-linear multiplications, i.e. squares are (almost) for free
- AES Sbox requires 4 non-linear mults [RP10].

# $\{X, X^2\} \xrightarrow{\times} \{X^3, X^{12}\} \xrightarrow{\times} \{X^{14}\} \xrightarrow{\times} \{X^{15}, X^{240}\} \xrightarrow{\times} X^{254}$



#### Side-Channel inspired



- Write Sbox(x) as a poly with minimal non-linear multiplications, i.e. squares are (almost) for free
- AES Sbox requires 4 non-linear mults [RP10].
- DES Sbox requires 3 non-linear mults [PV16].

$$\{X, X^2\} \xrightarrow{\times} \{X^3, X^{12}\} \xrightarrow{\times} \{X^{14}\} \xrightarrow{\times} \{X^{15}, X^{240}\} \xrightarrow{\times} X^{254}$$





- [RR16] AES latency around 15-20ms in 1GB/s LAN.
- Our AES-RP has 23ms over 1GB/s LAN network.



#### AES-128

#### 10 rounds





#### How to Sbox – online



















## At pos (x+r) => Sbox(r + x + r)









# 7 mults.





















# How to Sbox - preprocessing [r] [Sbox(r)] ... [Sbox(r+255)]





- Demultiplex on secret data with few multiplications.
- Multiplex Sbox is (almost) for free









## $[X^r] = [2^r] \in GF(2^n)$





















![](_page_49_Picture_1.jpeg)

![](_page_50_Figure_0.jpeg)

## TL;DR

| N    | k = 1 | 8   | 40 | 64 | 128 |
|------|-------|-----|----|----|-----|
| 64   | 62    | 9   | 5  | 5  | 5   |
| 128  | 126   | 17  | 7  | 6  | 6   |
| 256  | 254   | 33  | 11 | 8  | 7   |
| 512  | 510   | 65  | 18 | 12 | 9   |
| 1024 | 1022  | 129 | 31 | 20 | 13  |

**Table 1.** Number of  $\mathbb{F}_2 \times \mathbb{F}_{2^k}$  multiplications for creating a masked lookup table of size N, for varying k.

![](_page_51_Picture_3.jpeg)

#### So many choices...

![](_page_52_Picture_1.jpeg)

![](_page_52_Picture_2.jpeg)

| Protocol                    | Online          |                 | Comms.              | Notes           |
|-----------------------------|-----------------|-----------------|---------------------|-----------------|
|                             | Latency<br>(ms) | Throughput (/s) | (total)             |                 |
| TinyTable (binary) [DNNR16] | 4.18            | 24500           | 3.07 MB             |                 |
| TinyTable (optim.) [DNNR16] | 1.02            | 339000          | $786.4 \mathrm{MB}$ |                 |
| Wang et al. [WRK17]         | 0.93            | 1075            | $2.57 \mathrm{MB}$  | $10 { m ~Gbps}$ |
| Rindal-Rosulek [RR16]       | 1.0             | 1000            | $1.6 \mathrm{MB}$   | $10 { m ~Gbps}$ |
| $OP-LUT [DKS^+17]$          | 5               | 41670           | $0.103 \mathrm{MB}$ | passive         |
| $SP-LUT [DKS^+17]$          | 6               | 2208            | $0.044~\mathrm{MB}$ | passive         |
| AES-LT                      | 0.93            | 236200          | $8.4 \ \mathrm{MB}$ |                 |
| AES-RP                      | 7.19            | 940             | $2.9 \mathrm{MB}$   |                 |

![](_page_53_Picture_3.jpeg)

| Protocol                    | Online          |                 | Comms.              | Notes           |
|-----------------------------|-----------------|-----------------|---------------------|-----------------|
|                             | Latency<br>(ms) | Throughput (/s) | (total)             |                 |
| TinyTable (binary) [DNNR16] | 4.18            | 24500           | $3.07 \mathrm{MB}$  |                 |
| TinyTable (optim.) [DNNR16] | 1.02            | 339000          | $786.4 \mathrm{MB}$ |                 |
| Wang et al. [WRK17]         | 0.93            | 1075            | $2.57 \mathrm{MB}$  | $10 { m ~Gbps}$ |
| Rindal-Rosulek [RR16]       | 1.0             | 1000            | $1.6 \mathrm{MB}$   | $10 { m ~Gbps}$ |
| $OP-LUT [DKS^+17]$          | 5               | 41670           | $0.103 \mathrm{MB}$ | passive         |
| SP-LUT $[DKS^+17]$          | 6               | 2208            | $0.044~\mathrm{MB}$ | passive         |
| AES-LT                      | 0.93            | 236200          | $8.4 \ \mathrm{MB}$ |                 |
| AES-RP                      | 7.19            | 940             | $2.9 \mathrm{MB}$   |                 |

![](_page_54_Picture_3.jpeg)

| Protocol                    |                 | Online          | Comms.              | Notes           |
|-----------------------------|-----------------|-----------------|---------------------|-----------------|
|                             | Latency<br>(ms) | Throughput (/s) | (total)             |                 |
| TinyTable (binary) [DNNR16] | 4.18            | 24500           | 3.07 MB             |                 |
| TinyTable (optim.) [DNNR16] | 1.02            | 339000          | $786.4 \mathrm{MB}$ |                 |
| Wang et al. [WRK17]         | 0.93            | 1075            | $2.57 \mathrm{MB}$  | $10 { m ~Gbps}$ |
| Rindal-Rosulek [RR16]       | 1.0             | 1000            | 1.6  MB             | $10 { m ~Gbps}$ |
| $OP-LUT [DKS^+17]$          | 5               | 41670           | $0.103 \mathrm{MB}$ | passive         |
| $SP-LUT [DKS^+17]$          | 6               | 2208            | $0.044 \mathrm{MB}$ | passive         |
| AES-LT                      | 0.93            | 236200          | $8.4 \ \mathrm{MB}$ |                 |
| AES-RP                      | 7.19            | 940             | $2.9 \mathrm{MB}$   |                 |

![](_page_55_Picture_3.jpeg)

| Protocol                                                                              |                                          | Online                    | Comms.                         | Notes                         |
|---------------------------------------------------------------------------------------|------------------------------------------|---------------------------|--------------------------------|-------------------------------|
|                                                                                       | Latency<br>(ms)                          | Throughput (/s)           | (total)                        |                               |
| TinyTable (binary) [DNNR16]<br>TinyTable (optim.) [DNNR16]<br>Wang et al. [WRK17]     | $4.18 \\ 1.02 \\ 0.93$                   | $24500 \\ 339000 \\ 1075$ | 3.07 MB<br>786.4 MB<br>2.57 MB | $10 { m ~Gbps}$               |
| Rindal-Rosulek [RR16]<br>OP-LUT [DKS <sup>+</sup> 17]<br>SP-LUT [DKS <sup>+</sup> 17] | $egin{array}{c} 1.0 \ 5 \ 6 \end{array}$ | $1000 \\ 41670 \\ 2208$   | 1.6 MB<br>0.103 MB<br>0.044 MB | 10 Gbps<br>passive<br>passive |
| AES-LT                                                                                | 0.93                                     | 236200                    | 8.4 MB                         |                               |
| AES-RP                                                                                | 7.19                                     | 940                       | 2.9  MB                        |                               |

![](_page_56_Picture_3.jpeg)

## Thank you! #triples

![](_page_57_Picture_1.jpeg)

![](_page_57_Picture_2.jpeg)

#### LAN results.

| Online (single-thread) |                                                                             | Onlin                                                                                                                                                                                                  | ne (multi-tl                                                                                                                                                                                                                                                                                                                                          | Preprocessing <sup><i>a</i></sup>                      |                                                        |                                                         |
|------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|
| Latency<br>(ms)        | Batch size                                                                  | ops/s                                                                                                                                                                                                  | Batch<br>size                                                                                                                                                                                                                                                                                                                                         | $\mathrm{ops/s}$                                       | Threads                                                | $\mathrm{ops/s}$                                        |
| 5.20                   | 64                                                                          | 758                                                                                                                                                                                                    | 1024                                                                                                                                                                                                                                                                                                                                                  | 3164                                                   | 16                                                     | 30.7                                                    |
| 7.19                   | 1024                                                                        | 940                                                                                                                                                                                                    | 64                                                                                                                                                                                                                                                                                                                                                    | 3872                                                   | 16                                                     | 46.1                                                    |
| 0.928                  | 1024                                                                        | 51654                                                                                                                                                                                                  | 512                                                                                                                                                                                                                                                                                                                                                   | 236191                                                 | 32                                                     | 16.79                                                   |
| 270                    | 512                                                                         | 130                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                     | -                                                      | -                                                      | 1.24                                                    |
| 36.98                  | 512                                                                         | 86                                                                                                                                                                                                     | 512                                                                                                                                                                                                                                                                                                                                                   | 366                                                    | 32                                                     | 25.6                                                    |
| 4.254                  | 1024                                                                        | 10883                                                                                                                                                                                                  | 512                                                                                                                                                                                                                                                                                                                                                   | 45869                                                  | 16                                                     | 15.3                                                    |
|                        | Online<br>Latency<br>(ms)<br>5.20<br>7.19<br>0.928<br>270<br>36.98<br>4.254 | Online (single-th)         Latency (ms)       Batch size         5.20       64         7.19       1024         0.928       1024         270       512         36.98       512         4.254       1024 | $\begin{array}{c c c c c c c } & \mbox{Online (single-thread)} \\ \hline Latency & Batch & \mbox{ops/s} \\ (ms) & size \\ \hline 5.20 & 64 & 758 \\ \hline 7.19 & 1024 & 940 \\ \hline 0.928 & 1024 & 51654 \\ \hline 0.928 & 1024 & 51654 \\ \hline 270 & 512 & 130 \\ \hline 36.98 & 512 & 86 \\ \hline 4.254 & 1024 & 10883 \\ \hline \end{array}$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ |

Table 3. 1 Gbps LAN timings for evaluating AES and 3DES in MPC.

![](_page_58_Picture_3.jpeg)

#### #party #party #party

![](_page_59_Picture_1.jpeg)