Faster Secure Multi-Party Computation of AES and DES Using Lookup Tables

Marcel Keller, Emmanuela Orsini, Dragos Rotaru, Peter Scholl, Eduardo Soria-Vazquez, and Srinivas Vivek

ACNS 2017

Multi-Party Computation

製毝 University of

C

Goal: Compute $\mathrm{F}(\mathrm{a}, \mathrm{b}, \mathrm{c})$.

Multi-Party Computation

管 15 University of
20 BRISTOL

Bob has problems.

道 University of
0 BRISTOL

has problems?

Look-up tables are everywhere in MPC.

Floating Point
 Oblivious RAM

Non-linear functions

has problems?

Look-up tables are everywhere in MPC.

Floating Point
 Oblivious RAM

Non-linear functions

Non-linear? AES and 3-DES

箴造
[amisistoi

Non-linear? AES and 3-DES

故多 U University of

Non-linear? AES and 3-DES

Non-linear? AES and 3-DES

System researched in Brandeis JANA project.
$\mathrm{Enc}(42)$

Fastest AES and 3-DES in MPC with malicious security

- Apply side-channel countermeasures in the MPC land.
- Improve on previous AES TinyTable by at least 50 times.
- 3-DES has now 100 times faster online time.

28 BRISTOL

Concurrent Work

- [DNNR16] - TinyTable. Improved version now at CRYPTO17.
- [DKS+17] - Dessouky et al. in NDSS17. Semi-Honest setting based on 1-out-of-N OT. Also built a compiler which can be used with our protocol.

MPC with Secret Sharing

$$
[x] \leftarrow x_{2}
$$

$$
x=x_{1}+\cdots+x_{n}
$$

Each P_{i} has $[x] \leftarrow x_{i}$

$$
[x] \leftarrow x_{1}
$$

$$
[x] \leftarrow x_{3}
$$

勾㑒 BRISTOL

MPC Preprocessing Phase

Generate Triples. [c] = [a][b]

BRISTOL

MPC Preprocessing Phase

Generate Triples. [c] = [a][b]

MPC Preprocessing Phase

迹 U University of 28 BRISTOL

MPC Preprocessing Phase

慗迫 University of国 ${ }^{2} 8$ BRISTOL

MPC Online Phase

Use Triples.

MPC Online Phase

廟等 52 ${ }^{24}$ BRISTOL

MPC Circuit Evaluation

MPC Circuit Evaluation

 [国 BRISTOL

MPC Circuit Evaluation

MPC Circuit Evaluation

Side－Channel inspired

－Write Sbox（x）as a poly with minimal non－linear multiplications，i．e．squares are（almost）for free
－AES Sbox requires 4 non－linear mults［RP10］．

$$
\begin{aligned}
& \left\{X, X^{2}\right\} \xrightarrow{\times}\left\{X^{3}, X^{12}\right\} \xrightarrow{\times}\left\{X^{14}\right\} \xrightarrow{\times}\left\{X^{15}, X^{240}\right\} \xrightarrow{\times} X^{254} \\
& \text { 昭白白白白白白白 }
\end{aligned}
$$

Side－Channel inspired

－Write Sbox（x）as a poly with minimal non－linear multiplications，i．e．squares are（almost）for free
－AES Sbox requires 4 non－linear mults［RP10］．
－DES Sbox requires 3 non－linear mults［PV16］．

$$
\begin{aligned}
& \left\{X, X^{2}\right\} \xrightarrow{\times}\left\{X^{3}, X^{12}\right\} \xrightarrow{\times}\left\{X^{14}\right\} \xrightarrow{\times}\left\{X^{15}, X^{240}\right\} \xrightarrow{\times} X^{254} \\
& \text { 回回 臼白回白白白 }
\end{aligned}
$$

Side-Channel inspired

- [RR16] - AES latency around $15-20 \mathrm{~ms}$ in 1GB/s LAN. - Our AES-RP has 23 ms over $1 \mathrm{~GB} / \mathrm{s}$ LAN network.

BRISTOL

AES-128

10 rounds

16
 Sbox([x])

16
 Sbox([x])

点) $\frac{1}{2}$ University of
28 BRISTOL

How to Sbox - online

[x]

[Sbox(x)]

How to Sbox - online

How to Sbox - online $[x] \Rightarrow[\operatorname{Sbox}(x)]$

[r]

[Sbox(r)]

[Sbox(r+255)]

How to Sbox - online $[x] \Rightarrow[\operatorname{Sbox}(x)]$

[r]

[Sbox(r)]

[Sbox(r+255)]

$x+r$

[Sbox(x)]

[Sbox(x)]

At $\operatorname{pos}(x+r)=>\operatorname{Sbox}(r+x+r)$

造 0 BRISTOL

How to Sbox - preprocessing

Take random [r].
Compute [Sbox(r)], ... [Sbox(r+255)]

How to Sbox - preprocessing

Take random [r].
Compute [Sbox(r)], ... [Sbox(r+255)]

箴造
28 BRISTOL

How to Sbox - preprocessing

Take random [r].
Compute [Sbox(r)], ... [Sbox(r+255)]

28 BRISTOL

How to Sbox - preprocessing

Take random [r].
Compute [Sbox(r)], ... [Sbox(r+255)]

造造 University of
62 BRISTOL

How to Sbox - preprocessing

Take random [r].
Compute [Sbox(r)], ... [Sbox(r+255)]

How to Sbox - preprocessing

Take random [r].
Compute [Sbox(r)], ... [Sbox(r+255)]

造

11 mults.

How to Sbox - preprocessing

- Demultiplex on secret data with few multiplications.
- Multiplex Sbox is (almost) for free

28 BRISTOL

520 BRISTOL

How to Sbox - preprocessing

[Sbox(r)]

[2**r]

[0]

$$
\left[X^{r}\right]=\left[2^{r}\right] \in G F\left(2^{n}\right)
$$

How to Sbox - preprocessing

 62 BRISTOL

How to Sbox - preprocessing

整追 University of T2 2 BRISTOL

How to Sbox - preprocessing

How to Sbox - preprocessing [r]

How to Sbox - preprocessing

[Sbox(r)]
Mult. with public scalars

T2 2 BRISTOL

How to Sbox - preprocessing

[Sbox(r)]
[Sbox(r+1)]

Mult. with public scalars is cheap

How to Sbox - preprocessing [r] [Sbox(r)]
 7 mults. in $G F\left(2^{256}\right)$ 850kB

How to Sbox - preprocessing [r]
 7 mults. in $G F\left(2^{256}\right)$ 850 kB

 View ops. as polys in $G F\left(2^{k}\right)$
 11 mults. in $G F\left(2^{40}\right)$ 47kB

N	$k=1$	8	40	64	128
64	62	9		5	5
128	126	17		6	6
256	254	33		8	7
512	510	65		12	9
1024	1022	129	31	20	13

Table 1. Number of $\mathbb{F}_{2} \times \mathbb{F}_{2^{k}}$ multiplications for creating a masked lookup table of size N, for varying k.

So many choices...

囦 Unimarito日le Bristoi

Faster is...faster.

Protocol	Online		Comms. (total)	Notes
	Latency (ms)	Throughput (/s)		
TinyTable (binary) [DNNR16]	4.18	24500	3.07 MB	
TinyTable (optim.) [DNNR16]	1.02	339000	786.4 MB	
Wang et al. [WRK17]	0.93	1075	2.57 MB	10 Gbps
Rindal-Rosulek [RR16]	1.0	1000	1.6 MB	10 Gbps
OP-LUT [DKS ${ }^{+}$17]	5	41670	0.103 MB	passive
SP-LUT [DKS ${ }^{+}$17]	6	2208	0.044 MB	passive
AES-LT	0.93	236200	8.4 MB	
AES-RP	7.19	940	2.9 MB	

Table 6. Performance comparison with other 2-PC protocols for evaluating AES in a LAN setting.

Faster is...faster.

Protocol	Online		Comms. (total)	Notes
	Latency (ms)	Throughput (/s)		
TinyTable (binary) [DNNR16]	4.18	24500	3.07 MB	
TinyTable (optim.) [DNNR16]	1.02	339000	786.4 MB	
Wang et al. [WRK17]	0.93	1075	2.57 MB	10 Gbps
Rindal-Rosulek [RR16]	1.0	1000	1.6 MB	10 Gbps
OP-LUT [DKS ${ }^{+}$17]	5	41670	0.103 MB	passive
SP-LUT [DKS ${ }^{+}$17]	6	2208	0.044 MB	passive
AES-LT	0.93	236200	8.4 MB	
AES-RP	7.19	940	2.9 MB	

Table 6. Performance comparison with other 2-PC protocols for evaluating AES in a LAN setting.

Faster is...faster.

Protocol	Online		Comms. (total)	Notes
	Latency (ms)	Throughput (/s)		
TinyTable (binary)[DNNR16]	4.18	24500	3.07 MB	
TinyTable (optim.)[DNNR16]	1.02	339000	786.4 MB	
Wang et al. [WRK17]	0.93	1075	2.57 MB	10 Gbps
Rindal-Rosulek [RR16]	1.0	1000	1.6 MB	10 Gbps
OP-LUT [DKS ${ }^{+}$17]	5	41670	0.103 MB	passive
SP-LUT [DKS ${ }^{+}$17]	6	2208	0.044 MB	passive
AES-LT	0.93	236200	8.4 MB	
AES-RP	7.19	940	2.9 MB	

Table 6. Performance comparison with other 2-PC protocols for evaluating AES in a LAN setting.

Faster is...faster.

Protocol	Online		Comms. (total)	Notes
	Latency (ms)	Throughput (/s)		
TinyTable (binary) [DNNR16]	4.18	24500	3.07 MB	
TinyTable (optim.) [DNNR16]	1.02	339000	786.4 MB	
Wang et al. [WRK17]	0.93	1075	2.57 MB	10 Gbps
Rindal-Rosulek [RR16]	1.0	1000	1.6 MB	10 Gbps
OP-LUT [DKS ${ }^{+}$17]	5	41670	0.103 MB	passive
SP-LUT [DKS ${ }^{+}$17]	6	2208	0.044 MB	passive
AES-LT	0.93	236200	8.4 MB	
AES-RP	7.19	940	2.9 MB	

Table 6. Performance comparison with other 2-PC protocols for evaluating AES in a LAN setting.

Thank you! \#triples

LAN results.

Cipher	Online (single-thread)			Online (multi-thread)			Preprocessing ${ }^{a}$ ops/s
	Latency (ms)	Batch size	ops/s	Batch size	ops/s	Threads	
AES-BD	5.20	64	758	1024	3164	16	30.7
AES-RP	7.19	1024	940	64	3872	16	46.1
AES-LT	0.928	1024	51654	512	236191	32	16.79
3DES-Raw	270	512	130	-	-	-	1.24
3DES-PV	36.98	512	86	512	366	32	25.6
3DES-LT	4.254	1024	10883	512	45869	16	15.3

Table 3. 1 Gbps LAN timings for evaluating AES and 3DES in MPC.

\#party \#party \#party

