
The return of Eratosthenes: Secure Generation
of RSA Moduli using Distributed Sieving

Cyprien Delpech de Saint Guilhem¹, Eleftheria Makri¹, Dragos Rotaru², Titouan Tanguy¹

¹KU Leuven

²Cape Privacy

Summary of Contributions

● RSA modulus generation protocol with generic MPC.

● Up to 37x better communication cost compared to CCD+20.

● Toolbox for MPC over Rings via CRT.

● Convert to Integer protocol, of independent interest.

● A biprime N, with two secret prime factors, p and q.

● Heart of the first public key cryptosystem; security based on factoring
hardness assumption.

RSA Modulus

Why RSA Moduli?

● Signatures and Encryption
○ [RSA-77], [Paillier-99].

● Cryptographic accumulators
○ [Benaloh-deMare-93], [Camenisch-Lysyanskaya-02], [Li-Li-Xue-07], [Boneh-Bünz-Fisch-19],

● VDF and Timelock puzzles
○ [Rivest-Shamir-Wagner-99], Boneh-Bonneau-Bünz-Fisch-18], [Wesolowski-19], [Pietrzak-19],

[Ephraim-Freitag-Komargodski-Pass-19].

● Efficient zk-SNARKs
○ [Bünz-Fisch-Szepieniec-19], [Lai-Malavolta-19]

● And others...

Why (distributed) RSA Moduli?

● Threshold Cryptography

Why (distributed) RSA Moduli?

● Companies or foundations

Our main result

Up to 37x better communication cost compared to CCD+20.

- our RSA modulus generation works with ANY LSSS based MPC.
- along the way we had to develop a toolbox for MPC operations over CRT…

a

b

c

de

Securely compute f (a, b, c, d, e).

● Generic multiparty computation
● Work with CRT components

Main tool

Textbook RSA modulus generation

1. Choose random
2. If is not prime return to Step 1.
3. Repeat first two steps to sample .
4. Compute .

Textbook RSA modulus generation

1. Choose random
2. If is not prime return to Step 1.
3. Repeat first two steps to sample .
4. Compute .

Distributed RSA modulus generation

1. Sample as integer shares.
2. Compute
3. Check whether N is bi-prime using .
4. Parties run a consistency check to protect from malicious behaviour.

Related Work
Protocol Security Dishonest

Majority
#Parties Test Leakage-free

[BF97] Passive ✗ n ≥ 3 biprimality ✓

[FMY98] Active ✗ n ≥ 3 biprimality ✓

[PS98] Active ✓ n = 2 biprimality ✗

[Gil99] Passive ✓ n = 2 biprimality ✓

[ACS02] Passive ✗ n ≥ 3 primality ✓

[DM10] Active ✗ n = 3 primality ✓

[HMRT12,
HMR+19]

Active ✓ n ≥ 2 biprimality ✓

[FLOP18] Active ✓ n = 2 biprimality ✗

[CCD+20] Active ✓ n ≥ 2 biprimality ✓

[CHI+20] Active* ✓ n ≥ 2 biprimality ✓

Ours Active ✓ n ≥ 2 biprimality ✓

*Diogenes works in the semi-honest coordinator model, and active security is only guaranteed for the
non-coordinating parties.

Connections with related work

CCD+20

OT based

CHI+20

GMW based

Can we make it work
over arithmetic
circuits?

OMG! They’ve
solved it!
With a central
coordinator and
special SHE packing

Connections with related work

CCD+20

OT based

CHI+20

GMW based

Can we make it work
over arithmetic
circuits?

OMG! They’ve
solved it!
With a central
coordinator and
special SHE packing

Ours

Generic MPC

GRS+16 (CCS)
Malicious exponentiation

DamgårdMikkelsen2010
Integer sharing

MalkinWuBoneh99
Distributed sieving

BonehFranklin97
Protocol Blueprint

RST+19
Core of malicious check

Our Protocol

1. Sample candidate primes p and q

2. Securely compute N = p q and reveal N

3. Jacobi biprimality test

4. Consistency check

5. GCD test

MPC – CRT

MPC Engine
over Z

N

Input in Z
N

MPC Engine

over Z
p1

 Input in Z

p1

. . .
CRT reconstruct the

output over
Z

N
, N = p

1
 x … x p

L

Output in Z
N

 Output in Z
p1

MPC Engine

over Z
pL

 Input in Z
pL

 Output in Z
pL

 The of

*Inspired by Malkin et al.
MWB99

Distributed Sieving

2 3 5MSample ...7

0 0 0 0

0 0 0 0

0 0 0 0

*Inspired by Malkin et al.
MWB99

Distributed Sieving

2 3 5MSample ...7

0 0 0 0

0 0 0 0

0 0 0 0

*Inspired by Malkin et al.
MWB99

Distributed Sieving

2 3 5MSample ...7

0 0 0 0

0 0 0 0

0 0 0 0

*Inspired by Malkin et al.
MWB99

Distributed Sieving

2 3 5MSample ...7

0 0 0 0

0 0 0 0

0 0 0 0

Our Protocol

1. Sample candidate primes p and q

2. Securely compute N = p q and reveal N

3. Jacobi biprimality test

4. Consistency check

5. GCD test

Combine

Prevent overflow

Combine

● Extend the CRT representation: product is taken over the integers (i.e.,
prevent overflow).

● Perform “standard” secure multiplication over the MPC-CRT engines

● Reveal and CRT-Reconstruct the product N

● Check that N falls within the predetermined bounds, and is coprime to
MSample

Our Protocol

1. Sample candidate primes p and q

2. Securely compute N = p q and reveal N

3. Jacobi biprimality test

4. Consistency check

5. GCD test

Jacobi Test

● Sample public s.t. the Jacobi symbol

● Securely compute in the exponent of

● Abort if

● This test accepts false positives with probability ½. We repeat the test sec
times to increase the probability of N being a biprime to 2-sec.

Our Protocol

1. Sample candidate primes p and q

2. Securely compute N = p q and reveal N

3. Jacobi biprimality test

4. Consistency check

5. GCD test

Consistency Check

● This check ensures security against malicious parties, who contributed
inconsistent shares to the Jacobi test.

1. LevelUp s.t. the CRT representation allows the consistency check
computations to be performed without overflow.

2. Sample bounded randomness and multiplicatively mask the secret
exponent

3. Convert the CRT represented masked sharing to a sharing over the
integers

From CRT share to Integer share

From CRT share to Integer share

From CRT share to Integer share

Our Protocol

1. Sample candidate primes p and q

2. Securely compute N = p q and reveal N

3. Jacobi biprimality test

4. Consistency check

5. GCD test

Efficiency Analysis (1/2)

Scheme CCD+20 Ours CCD+20 Ours CCD+20 Ours

κ 1024 1024 1536 1536 2048 2048

semi-honest
(MB)

139 41.68 416 116.55 910 243.3

malicious (GB) 20.81 0.64 43.42 1.188 74.52 1.99

Communication cost per party, for 2-party protocol.

Efficiency Analysis (2/2)

Scheme CCD+20 Ours CCD+20 Ours CCD+20 Ours

κ 1024 1024 1536 1536 2048 2048

semi-honest
(MB)

2.09 4.34 6.24 12.17 13.65 25.23

malicious (GB) 1020 68.8 4734 153.2 8100 281.91

Communication cost per party, for 16-party protocol.

Summary of Contributions

● RSA modulus generation protocol with generic MPC.

● Exploit Distributed Sieving techniques and public knowledge to perform it
semi-honestly without degrading security.

● Convert to Integer protocol, of independent interest.

● Up to 37x better communication cost compared to CCD+20.

Thank you!

