# The return of Eratosthenes: Secure Generation of RSA Moduli using Distributed Sieving

Cyprien Delpech de Saint Guilhem<sup>1</sup>, Eleftheria Makri<sup>1</sup>, Dragos Rotaru<sup>2</sup>, Titouan Tanguy<sup>1</sup>

<sup>1</sup>KU Leuven

<sup>2</sup>Cape Privacy

# Summary of Contributions

- RSA modulus generation protocol with generic MPC.
- Up to 37x better communication cost compared to CCD+20.
- Toolbox for MPC over Rings via CRT.

• Convert to Integer protocol, of independent interest.

#### **RSA Modulus**

- A biprime *N*, with two secret prime factors, *p* and *q*.
- Heart of the first public key cryptosystem; security based on factoring hardness assumption.

# Why RSA Moduli?

- Signatures and Encryption
  - [RSA-77], [Paillier-99].
- Cryptographic accumulators
  - [Benaloh-deMare-93], [Camenisch-Lysyanskaya-02], [Li-Li-Xue-07], [Boneh-Bünz-Fisch-19],
- VDF and Timelock puzzles
  - [Rivest-Shamir-Wagner-99], Boneh-Bonneau-Bünz-Fisch-18], [Wesolowski-19], [Pietrzak-19],
     [Ephraim-Freitag-Komargodski-Pass-19].
- Efficient zk-SNARKs
  - [Bünz-Fisch-Szepieniec-19], [Lai-Malavolta-19]
- And others...

#### Why (distributed) RSA Moduli?

#### • Threshold Cryptography

Call 2021a for Feedback on Criteria for Threshold Schemes

NIST Multi-party Threshold Cryptography

2021-July-02: https://csrc.nist.gov/projects/threshold-cryptography

Please send comments to threshold-MP-call-2021a@nist.gov by September 13, 2021.

1. Scope of proposals. The future call for proposals will be intended to gather expert submissions of concrete threshold schemes for primitives that are *interchangeable* (in the sense of IR 8214A, Section 2.4) with<sup>2</sup> ECDSA, EdDSA, RSA signing/decryption, RSA keygen, AES, and ECC-based key agreement.<sup>3</sup> After an evaluation period, and possibly various stages for tweaks,

## Why (distributed) RSA Moduli?

• Companies or foundations







#### Our main result

Up to 37x better communication cost compared to CCD+20.

- our RSA modulus generation works with ANY LSSS based MPC.
- along the way we had to develop a toolbox for MPC operations over CRT...

# Main tool

•



#### Textbook RSA modulus generation

- 1. Choose random  $\ p \leftarrow \mathbb{Z}_{2^k}$
- 2. If p is not prime return to Step 1.
- 3. Repeat first two steps to sample q.
- 4. Compute  $N = p \cdot q$ .

#### Textbook RSA modulus generation

- 1. Choose random  $p \leftarrow \mathbb{Z}_{2^k}$
- 2. If p is not prime return to Step 1.
- 3. Repeat first two teps to sample q.
- 4. Compute  $N = p \cdot q$

 $a^{p-1} \bmod p$ 

#### Distributed RSA modulus generation

- 1. Sample p, q as integer shares.
- 2. Compute  $N = p \cdot q$
- 3. Check whether N is bi-prime using p, q .
- 4. Parties run a consistency check to protect from malicious behaviour.

#### Related Work

| Protocol                    | Security | Dishonest<br>Majority | #Parties     | Test        | Leakage-free |
|-----------------------------|----------|-----------------------|--------------|-------------|--------------|
| [BF97]                      | Passive  | ×                     | <i>n</i> ≥ 3 | biprimality | 1            |
| [FMY98]                     | Active   | ×                     | <i>n</i> ≥ 3 | biprimality | 1            |
| [PS98]                      | Active   | ✓                     | <i>n</i> = 2 | biprimality | ×            |
| [Gil99]                     | Passive  | 1                     | <i>n</i> = 2 | biprimality | ✓            |
| [ACS02]                     | Passive  | ×                     | <i>n</i> ≥ 3 | primality   | ✓            |
| [DM10]                      | Active   | ×                     | <i>n</i> = 3 | primality   | ✓            |
| [HMRT12 <i>,</i><br>HMR+19] | Active   | ✓                     | n ≥ 2        | biprimality | ✓            |
| [FLOP18]                    | Active   | 1                     | <i>n</i> = 2 | biprimality | ×            |
| [CCD+20]                    | Active   | 1                     | n ≥ 2        | biprimality | ✓            |
| [CHI+20]                    | Active*  | 1                     | n ≥ 2        | biprimality | 1            |
| Ours                        | Active   | ✓                     | n ≥ 2        | biprimality | 1            |

#### Connections with related work



#### Connections with related work



#### **Our Protocol**

- 1. Sample candidate primes *p* and *q*
- 2. Securely compute N = p q and reveal N
- 3. Jacobi biprimality test
- 4. Consistency check
- 5. GCD test

















## **Our Protocol**

1. Sample candidate primes *p* and *q* 

#### 2. Securely compute N = p q and reveal N

- 3. Jacobi biprimality test
- 4. Consistency check
- 5. GCD test

## Combine



## Combine

- Extend the CRT representation: product is taken over the integers (i.e., prevent overflow).
- Perform "standard" secure multiplication over the MPC-CRT engines

• Reveal and CRT-Reconstruct the product *N* 

• Check that *N* falls within the predetermined bounds, and is coprime to *M*Sample

## **Our Protocol**

- 1. Sample candidate primes *p* and *q*
- 2. Securely compute N = p q and reveal N

#### 3. Jacobi biprimality test

- 4. Consistency check
- 5. GCD test

#### Jacobi Test

- Sample public  $\gamma \in \mathbb{Z}_N$  s.t. the Jacobi symbol  $\left(rac{\gamma}{N}
  ight)=1$
- Securely compute  $\,\,\phi(N)/4\,\,$  in the exponent of  $\,\gamma\,\,$

$$_{{
m if}} \; \gamma^{\phi(N)/4} 
eq \pm 1$$

Abort

• This test accepts false positives with probability  $\frac{1}{2}$ . We repeat the test sec times to increase the probability of N being a biprime to  $2^{-sec}$ .

## **Our Protocol**

- 1. Sample candidate primes *p* and *q*
- 2. Securely compute N = p q and reveal N
- 3. Jacobi biprimality test
- 4. Consistency check
- 5. GCD test

## **Consistency Check**

- This check ensures security against malicious parties, who contributed inconsistent shares to the Jacobi test.
- **1.** LevelUp s.t. the CRT representation allows the consistency check computations to be performed without overflow.
- 2. Sample bounded randomness and multiplicatively mask the secret exponent
- **3.** Convert the CRT represented masked sharing to a sharing over the integers

#### From CRT share to Integer share



#### From CRT share to Integer share



#### From CRT share to Integer share



## **Our Protocol**

- 1. Sample candidate primes *p* and *q*
- 2. Securely compute N = p q and reveal N
- 3. Jacobi biprimality test
- 4. Consistency check

#### 5. GCD test

# Efficiency Analysis (1/2)

| Scheme              | CCD+20 | Ours  | CCD+20 | Ours   | CCD+20 | Ours  |
|---------------------|--------|-------|--------|--------|--------|-------|
| К                   | 1024   | 1024  | 1536   | 1536   | 2048   | 2048  |
| semi-honest<br>(MB) | 139    | 41.68 | 416    | 116.55 | 910    | 243.3 |
| malicious (GB)      | 20.81  | 0.64  | 43.42  | 1.188  | 74.52  | 1.99  |

Communication cost per party, for 2-party protocol.

# Efficiency Analysis (2/2)

| Scheme              | CCD+20 | Ours | CCD+20 | Ours  | CCD+20 | Ours   |
|---------------------|--------|------|--------|-------|--------|--------|
| К                   | 1024   | 1024 | 1536   | 1536  | 2048   | 2048   |
| semi-honest<br>(MB) | 2.09   | 4.34 | 6.24   | 12.17 | 13.65  | 25.23  |
| malicious (GB)      | 1020   | 68.8 | 4734   | 153.2 | 8100   | 281.91 |

Communication cost per party, for 16-party protocol.

# Summary of Contributions

• RSA modulus generation protocol with generic MPC.

• Exploit *Distributed Sieving techniques* and *public knowledge* to perform it semi-honestly without degrading security.

- Convert to Integer protocol, of independent interest.
- Up to 37x better communication cost compared to CCD+20.

# Thank you!